ДОКУМЕНИИ СТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Информация о владельце:

информация о владельце: ФИО: Федеральное государственное бюджетное образовательное учреждение высшего образования

Должность: Проректор по учебного МСКИЙ ГО СУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ Дата подписания: 27.09.2023 13:05:43 УПРАВ ПЕНИЯ И РА ЛИОЭЛЕКТРОНИКИ» УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ»

Уникальный программный ключ:

(ТУСУР)

27e516f4c088deb62ba68945f4406e13fd454355

УТВЕРЖДАЮ Проректор по УР

Документ подписан электронной подписью

Сертификат: a1119608-cdff-4455-b54e-5235117c185c Владелец: Сенченко Павел Васильевич Действителен: с 17.09.2019 по 16.09.2024

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ПРОЕКТИРОВАНИЕ МИКРОПРОЦЕССОРНЫХ СИСТЕМ

Уровень образования: высшее образование - магистратура

Направление подготовки / специальность: 11.04.04 Электроника и наноэлектроника

Направленность (профиль) / специализация: Промышленная электроника и

микропроцессорная техника

Форма обучения: очная

Факультет: Факультет электронной техники (ФЭТ) Кафедра: Кафедра промышленной электроники (ПрЭ)

Kypc: 1

Семестр: 1, 2

Учебный план набора 2022 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	1 семестр	2 семестр	Всего	Единицы
Лекционные занятия	18		18	часов
Практические занятия	8		8	часов
в т.ч. в форме практической подготовки	4		4	часов
Курсовой проект		18	18	часов
Самостоятельная работа	82	18	100	часов
Подготовка и сдача экзамена	36		36	часов
Общая трудоемкость	144	36	180	часов
(включая промежуточную аттестацию)	4	1	5	3.e.

	Формы промежуточной аттестация	Семестр
Экзамен		1
Курсовой проект		2

1. Общие положения

1.1. Цели дисциплины

1. Целью курса является изучение принципов построения и разработки комплексных микропроцессорных систем (МПС) силовой электроники, особенностей расчетов и проектирования электронных систем управления на их основе и знакомство с отладочными средствами микропроцессорных устройств.

1.2. Задачи дисциплины

- 1. Формирование способности проектировать устройства, приборы и системы электронной техники с учетом заданных требований (ТЗ), разрабатывать проектно-конструкторскую документацию (КД) в соответствии с методическими и нормативными требованиями.
- 2. Знакомство со всеми этапами проектирования и разработки электронного изделия: разработка и расчет параметров схемы в SCADA, разводка многослойной ВЧ платы под реальный тех процесс, 3D проектирование корпуса, любых радиаторов охлаждения и элементов печатной платы, формирование комплекта конструкторской документации для изготовления и монтажа, разработка программы для микроконтроллера на языке С, моделирование работы микропрограммы.
- 3. Разрабатывать и разводить силовые и информационные многослойные печатные платы с учетом корпусирования в системах сквозного проектирования уровня материнской платы ноутбука.
 - 4. Получить навыки проведения комплексной отладки и тестирования МПС.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Модуль профессиональной подготовки (major).

Индекс дисциплины: Б1.В.01.01.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

V от отготочница	Индикаторы достижения	Планируемые результаты обучения по		
Компетенция	компетенции	дисциплине		
Универсальные компетенции				
-	-	-		
	Общепрофессиональны	е компетенции		
-	-	-		
Профессиональные компетенции				

		1
ПК-4. Способен	ПК-4.1. Знает методы	Знает типовые схемные решения для
разрабатывать	подбора, изучения и анализа	
эффективные	литературных и патентных	компьютерных систем и формирует
алгоритмы решения	источников	комплект конструкторской документации
сформулированных		на изделие с учетом патентов.
задач с использованием	ПК-4.2. Умеет	Умеет формировать техническое задание
современных языков	анализировать состояние	на разработку электронных устройств с
программирования и	научнотехнической	микропроцессорным и
обеспечивать их	проблемы путем подбора,	микроконтроллерным управлением для
программную	изучения и анализа	решения научно-технической проблемы.
реализацию	литературных и патентных	
	источников	
	ПК-4.3. Владеет навыками	Владеет навыками проведения
	анализа состояния	комплексной отладки и тестирования МПС
	научнотехнической	1
	проблемы путем подбора,	
	изучения и анализа	
	литературных и патентных	
	источников	
ПК-11. Способен	ПК-11.1. Знает принципы	Знает все этапы разработки современных
проектировать	подготовки технических	электронных устройств при при
устройства, приборы и	заданий на современные	формировании технического задания на
системы электронной	электронные устройства	проект
техники с учетом	ПК-11.2. Умеет	Умеет рассчитывать, проектировать,
заданных требований	разрабатывать приборы и	конструировать микропроцессорные и
	системы электронной	компьютерные системы, устройства и
	техники	изделия на их основе с использованием
		SCADA систем сквозного проектирования
	ПК-11.3. Владеет навыками	Владеет различными современными
	разработки рабочей	пакетами прикладных программ для
	топологии и плана	проектирования, конструирования и
	технологии монтажа и	расчетов электронных схем содержащих
	сборки электронной	микропроцессоры и микроконтроллеры
	компонентной базы изделий	marketipotteecopsi ii minkpokoniipossiepsi
	микро- и наноэлектроники	
	mintpo ii iidiioonekipoiliikii	

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

Dywyd ywefyedd ye greny y cerry		Семе	естры	
Виды учебной деятельности	часов	1 семестр	2 семестр	
Контактная аудиторная работа обучающихся с	44	26	18	
преподавателем, всего				
Лекционные занятия	18	18		
Практические занятия	8	8		
Курсовой проект	18		18	

Самостоятельная работа обучающихся, в т.ч. контактная	100	82	18
внеаудиторная работа обучающихся с преподавателем, всего			
Выполнение творческого задания	30	30	
Подготовка к тестированию	52	52	
Написание отчета по курсовому проекту	18		18
Подготовка и сдача экзамена	36	36	
Общая трудоемкость (в часах)	180	144	36
Общая трудоемкость (в з.е.)	5	4	1

5. Структура и содержание дисциплины

5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

1 Программный комплекс класса EDA, предназначенный для разработки электрических схем и печатных плат. 2	Названия разделов (тем) дисциплины	Лек. зан., ч	Прак. зан., ч	Курс. пр.	Сам. раб.,	Всего часов (без экзамена)	Формируемые компетенции	
предназначенный для разработки электрических схем и печатных плат. 2 Разработка библиотек элементов и их футпринтов 3 Разработка электрических и принципиальных схем с несколькими листами 4 Расчет волновых сопротивлений проводников (импеданс) для многослойных ВЧ печатных плат 5 Проектирование многослойных ВЧ печатных плат об Классификация микропроцессоров, варианты архитектуры, общая структура и принципы функционирования устройств и систем 7 Компиляторы и симуляторы, принципы функционирования отладки и поиска ошибок 8 Подключение и управление периферийными устройствами с микроконтроллера (датчики измерения физических величин, двигатели, выключатели) Итого за семестр 18 8 0 82 108	1 семестр							
футпринтов 3 Разработка электрических и принципиальных схем с несколькими листами 4 Расчет волновых сопротивлений проводников (импеданс) для многослойных ВЧ печатных плат 5 Проектирование многослойных ВЧ печатный тех процесс с учетом правил трассировки 6 Классификация микропроцессоров, варианты архитектуры, общая структура и принципы функционирования устройств и систем 7 Компиляторы и симуляторы, принципы отладки и поиска ошибок 8 Подключение и управление 2 - 10 12 ПК-11, ПК-4 ПК-11, ПК-4 периферийными устройствами с микроконтроллера (датчики измерения физических величин, двигатели, выключатели) Итого за семестр 18 8 0 82 108	предназначенный для разработки	2	-	-	8	10	ПК-11, ПК-4	
принципиальных схем с несколькими листами 4 Расчет волновых сопротивлений роводников (импеданс) для многослойных ВЧ печатных плат 5 Проектирование многослойных ВЧ печатных плат под конкретный тех процесс с учетом правил трассировки б Классификация микропроцессоров, варианты архитектуры, общая структура и принципы функционирования устройств и систем 7 Компиляторы и симуляторы, робить и систем 7 Компиляторы и симуляторы, развение периферийными устройствами с микроконтроллера (датчики измерения физических величин, двигатели, выключатели) Итого за семестр 18 8 0 82 108		2	2	ı	12	16	ПК-11, ПК-4	
проводников (импеданс) для многослойных ВЧ печатных плат 5 Проектирование многослойных ВЧ печатных плат под конкретный тех процесс с учетом правил трассировки 6 Классификация микропроцессоров, варианты архитектуры, общая структура и принципы функционирования устройств и систем 7 Компиляторы и симуляторы, принципы отладки и поиска ошибок 8 Подключение и управление периферийными устройствами с микроконтроллера (датчики измерения физических величин, двигатели, выключатели) Итого за семестр 18 8 0 82 108	принципиальных схем с несколькими	2	2	1	12	16	ПК-11, ПК-4	
печатных плат под конкретный тех процесс с учетом правил трассировки 6 Классификация микропроцессоров, варианты архитектуры, общая структура и принципы функционирования устройств и систем 7 Компиляторы и симуляторы, принципы отладки и поиска ошибок 8 Подключение и управление периферийными устройствами с микроконтроллера (датчики измерения физических величин, двигатели, выключатели) Итого за семестр 18 8 0 82 108	проводников (импеданс) для	2	2	1	12	16	ПК-11, ПК-4	
варианты архитектуры, общая структура и принципы функционирования устройств и систем 7 Компиляторы и симуляторы, принципы отладки и поиска ошибок 8 Подключение и управление 2 - 10 12 ПК-11, ПК-4 периферийными устройствами с микроконтроллера (датчики измерения физических величин, двигатели, выключатели) Итого за семестр 18 8 0 82 108	печатных плат под конкретный тех	4	2	-	12	18	ПК-11, ПК-4	
принципы отладки и поиска ошибок 8 Подключение и управление периферийными устройствами с микроконтроллера (датчики измерения физических величин, двигатели, выключатели) Итого за семестр 18 8 0 82 108	варианты архитектуры, общая структура и принципы функционирования	2	-	-	8	10	ПК-11, ПК-4	
периферийными устройствами с микроконтроллера (датчики измерения физических величин, двигатели, выключатели) Итого за семестр 18 8 0 82 108	1 2 1 7	2	-	-	8	10	ПК-11, ПК-4	
1	периферийными устройствами с микроконтроллера (датчики измерения физических величин, двигатели,	2	-	-			ПК-11, ПК-4	
	Итого за семестр	l	_	0	82	108		

9 Курсовой пр Конкретизация технического задания	-	-	18	2	20	ПК-4
10 Курсовой пр Рекомендации по разработке функциональной схемы устройства	-	-		4	4	ПК-4
11 Курсовой пр Рекомендации по разработке блок-схемы алгоритма программы	-	-		2	2	ПК-4
12 Курсовой пр Рекомендации по разработке схемы электрической принципиальной	-	-		4	4	ПК-4
13 Курсовой пр Рекомендации по разработке прикладной программы	-	-		4	4	ПК-4
14 Курсовой пр Пример оформления пояснительной записки и графических материалов	-	-		2	2	ПК-4
Итого за семестр	0	0	18	18	36	
Итого	18	8	18	100	144	

5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины (в т.ч. по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов (тем) дисциплины (в т.ч. по лекциям)

Названия разделов (тем) дисциплины	Содержание разделов (тем) дисциплины (в т.ч. по лекциям)	Трудоемкость (лекционные занятия), ч	Формируемые компетенции
	1 семестр		
1 Программный комплекс класса EDA, предназначенный для разработки электрических схем и печатных плат.	Демонстрация основных возможностей SCADa системы - Altium Designer для разработки, проектирования печатных плат. Современный технический процесс изготовления многослойных печатных плат (МПП). Особенности проектирования высокоскоростных линий передачи данных (DDR2,3; Ethernet; USB2,3), их расчета, особенностей расположения	2	ПК-4, ПК-11
	проводников на МПП.		
	Итого	2	
2 Разработка библиотек элементов и их футпринтов	Создание УГО элементов: резисторов, конденсаторов, микросхем и других элементов. Создание собственных футпринтов и загрузка готовых: SOIC, BGA и выводных элементов. Создание 3D модели элементов и загрузка готовых. Связь УГО и футпринта.	2	ПК-4, ПК-11
	Итого	2	

3 Разработка	Создание проекта и схемных	2	ПК-4, ПК-11
электрических и	документов.		
принципиальных схем с несколькими листами	Оформление схемных документов. Изменение атрибутов документа.		
несколькими листами	Подключение внутренних и внешних		
	библиотек.		
	Размещение компонентов на поле		
	схемного документа.		
	Размещение линий групповой связи		
	(шин).		
	Реализация электрических связей.		
	Размещение на схеме портов питания		
	и имен цепей.		
	Размещение директив.		
	Присвоение позиционных		
	обозначений.		
	Компиляция проекта и проверка на ошибки		
	Итого	2	
4 Расчет волновых	Определение микрополоска.	2	ПК-4, ПК-11
сопротивлений	Диэлектрические проницаемости	2	111X-4, 111X-11
проводников (импеданс)	различных материалов в		
для многослойных ВЧ	многослойных печатных платах.		
печатных плат	Примеры расчета волнового		
ПСчатных плат	сопротивления 50 Ом и 100 Ом для		
	дифференциальных линий и		
	одиночных проводников под		
	конкретный тех процесс		
	многослойной печатной платы.		
	Итого	2	
5 Проектирование	Создание конструктива	4	ПК-4, ПК-11
многослойных ВЧ	многослойной печатной платы.	4	111X-4, 111X-11
печатных плат под	Установка правил проектирования под конкретный тех процесс.		
конкретный тех процесс с учетом правил	Размещение компонентов на плате.		
1	Интерактивная и автоматическая		
трассировки	1 -		
	трассировка проводников,		
	диф.линий.		
	Работа с полигонами, надписями,		
	шелкографией.		
	Импорт 3D корпуса изделия и 3D элементов печатной платы.		
	Автоматическая проверка по		
	внесенным правилам (DRC).		
	Генерация пакета документов для		
	изготовления и монтажа.	4	
	Итого	4	

C YC 1			
6 Классификация	Основные варианты архитектуры и	2	ПК-4, ПК-11
микропроцессоров,	структуры сложных устройств.		
варианты архитектуры,	Классификация современных		
общая структура и	микропроцессоров и		
принципы	микроконтроллеров по		
функционирования	функциональному признаку.		
устройств и систем	Общее описание процесса		
	проектирования модульных систем.		
	Классификация методик		
	проектирования электронных схем.		
	Области применения		
	специализированных интегральных		
	схем.		
	Итого	2	
7 Компиляторы и	Типовые конфигурации	2	ПК-4, ПК-11
симуляторы, принципы	микропроцессорных систем.		
отладки и поиска ошибок	Основные этапы процедуры		
	проектирования комплексного		
	проекта.		
	Средства проектирования и методы		
	автономной отладки аппаратных		
	средств микропроцессорных систем.		
	Обзор средств разработки и отладки		
	программного обеспечения.		
	Отладчики и симуляторы.		
	Прототипные платы.		
	Отладочные мониторы.		
	Мезонинная технология.		
	Схемные эмуляторы.		
	Интегрированные среды разработки.		
	Программаторы.		
	Логические анализаторы.		
	Встроенные в микропроцессоры		
	средства отладки.		
	Итого	2	
0 П			ПГ 4 ПГ 11
8 Подключение и	Примеры подключения и управление	2	ПК-4, ПК-11
управление	периферийными устройствами с		
периферийными	микроконтроллера (датчики		
устройствами с	измерения физических величин,		
микроконтроллера	двигатели, выключатели,		
(датчики измерения	GPS/ГЛОНАС приемники, Bluetooth		
физических величин,	приемо/передатчики, радио модемы		
двигатели, выключатели)	промышленного не лицензируемого		
	диапазона частот 400-800МГЦ)		
	Итого	2	
	Итого за семестр	18	
	2 семестр		
9 Курсовой пр	Конкретизация технического задания	-	ПК-4
Конкретизация	Итого	_	
технического задания	111010		

10 Курсовой пр Рекомендации по	Рекомендации по разработке функциональной схемы устройства	-	ПК-4
разработке функциональной схемы устройства	Итого	-	
11 Курсовой пр Рекомендации по	Рекомендации по разработке блок- схемы алгоритма программы	-	ПК-4
разработке блок-схемы алгоритма программы	Итого	-	
12 Курсовой пр Рекомендации по	Рекомендации по разработке схемы электрической принципиальной	-	ПК-4
разработке схемы электрической	Рекомендации по разработке блоксхемы алгоритма программы	-	ПК-4
принципиальной	Итого	-	
13 Курсовой пр Рекомендации по	Рекомендации по разработке прикладной программы	-	ПК-4
разработке прикладной программы	Итого	-	
14 Курсовой пр Пример оформления	Пример оформления пояснительной записки и графических материалов	-	ПК-4
пояснительной записки и графических материалов	Итого	-	
	Итого за семестр	-	
	Итого	18	

5.3. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 5.3. Таблица 5.3 – Наименование практических занятий (семинаров)

Названия разделов (тем)	Наименование практических	Трудоемкость,	Формируемые
дисциплины	занятий (семинаров)	Ч	компетенции
	1 семестр		
2 Разработка библиотек	Использование готовых	2	ПК-4
элементов и их футпринтов	библиотек и создание		
	собственных включая 3D вид.		
	Итого	2	
3 Разработка электрических и	Создание схемы устройства с	2	ПК-4
принципиальных схем с	использованием собственных		
несколькими листами	библиотек		
	Итого	2	
4 Расчет волновых	Выбор типа многослойной ВЧ	2	ПК-4
сопротивлений проводников	печатной платы для		
(импеданс) для многослойных	конкретного производства и		
ВЧ печатных плат	расчет проводников с		
	контролем волнового		
	сопротивления		
	Итого	2	

8

5 Проектирование	Трассировка печатной платы с	2	ПК-4
многослойных ВЧ печатных	использованием рассчитанных		
плат под конкретный тех	параметров проводников и		
процесс с учетом правил	правил		
трассировки	Итого	2	
	Итого за семестр	8	
	Итого	8	

5.4. Лабораторные занятия

Не предусмотрено учебным планом

5.5. Курсовой проект

Содержание, трудоемкость контактной аудиторной работы и формируемые компетенции в рамках выполнения курсового проекта представлены в таблице 5.5.

Таблица 5.5 – Содержание контактной аудиторной работы и ее трудоемкость

Содержание контактной аудиторной работы	Трудоемкость, ч	Формируемые компетенции
2 семестр		
Курсовой пр Конкретизация технического задания	2	ПК-4
Курсовой пр Рекомендации по разработке функциональной схемы устройства	4	ПК-4
Курсовой пр Рекомендации по разработке блок-схемы алгоритма программы	4	ПК-4
Курсовой пр Рекомендации по разработке схемы электрической принципиальной	4	ПК-4
Курсовой пр Рекомендации по разработке прикладной программы	4	ПК-4
Итого за семестр	18	
Итого	18	

Примерная тематика курсовых проектов:

- 1. Спроектировать многоканальную систему регулирования температуры в теплице. Включает восемь датчиков температуры и нагревателей. Значение стабилизируемой температуры задается в диапазоне от 10 до 40 □С. Индикация выходных сигналов на включение нагревателей с помощью линейки светодиодов. На цифровое табло вывести температуру объекта, номер которого набран на программном переключателе.
- 2. Спроектировать измеритель частоты сети с точностью до десятых долей герца при времени измерения не более одной секунды. Информация должна дублироваться на выносном табло, связь с которым осуществляется с помощью трехпроводной линии связи.
- 3. Разработать устройство охранной сигнализации. Число охраняемых объектов до 64. Устройство должно сохранять свою работоспособность при выключении сети. При нажатии кнопки «Запрос» на цифровые индикаторы последовательно выводятся номера объектов, в которых возникал сигнал «Тревога».
- 4. Спроектировать устройство контроля интенсивности движения через мост. По запросу внешнего устройства выводит на цифровые индикаторы час пик и количество автомобилей, прошедших через мост в этот час.
- 5. Спроектировать устройство управления звонком на занятия. Должно реализовать реальную сетку расписания школьных звонков, индикацию текущего времени.
- 6. Спроектировать устройство для измерения потребляемой электроэнергии в любой сети постоянного тока (до 10 000 кВтч).
- 7. Разработать часы электронные со звуковым сигналом.
- 8. Разработать цифровой автомобильный спидометр (три десятичных разряда).
- 9. Частота импульсов на выходе генератора в герцах от 1 до 99 должна быть равна числу на

- программном переключателе и отображаться на цифровых индикаторах. Длительность импульсов 100 мкс.
- 10. Спроектировать измеритель частоты вращения ротора двигателя. Диапазон измерения (100—10000 об/мин). Импульсный датчик вырабатывает 96 импульсов за каждый оборот. Время измерения не более трех оборотов ротора.
- 11. Разработать электронное устройство управления инкубатором. Точность задания и стабилизации температуры 0,1 \square C. Через каждый час обеспечить изменение положения яиц путем поворота на 45 \square . Предусмотреть цифровую индикацию температуры. Для аналого-цифрового преобразования сигнала использовать метод двухтактного интегрирования.
- 12. Спроектировать многоканальную систему регулирования температуры в теплице. Включает четыре датчика температуры и нагревателя. Значение стабилизируемой температуры задается в диапазоне от 10 до 40 □С. Индикация выходных сигналов на включение нагревателей с помощью линейки светодиодов. Для аналого-цифрового преобразования использовать метод двухтактного интегрирования.
- 13. Разработать электронный таймер с индикацией в режиме обратного счета установленного времени в часах и минутах. В течение заданного временного отрезка должен быть включен исполнительный элемент (зарядное устройство).
- 14. Спроектировать устройство контроля интенсивности движения автомобилей по автомагистрали. На цифровые индикаторы выводится текущее время и количество автомобилей, прошедших через магистраль с начала суток.
- 15. Разработать устройство охранной сигнализации квартир одного подъезда многоэтажного дома. Число охраняемых объектов до 16.
- 16. Спроектировать шахматные электронные часы для блиц-турнира.
- 17. Спроектировать устройство управления гудком на заводе. Должно реализовать реальную сетку расписания смен, обеденных перерывов, индикацию текущего времени.
- 18. Спроектировать электронные весы. Фиксируют вес и стоимость расфасованной порции продукта.
- 19. Спроектировать измеритель частоты пульса человека. Время измерения не более 3 секунд.
- 20. Спроектировать генератор пачек импульсов, следующих с частотой 10 Гц. Частота импульсов в пачке 10 кГц, число импульсов в пачке (от 1 до 100) набирается на лимбах программного переключателя и отображается на цифровых индикаторах. Длительность импульса 10 мкс.
- 21. Спроектировать счетчик потребляемой тепловой энергии.
- 22. Спроектировать электронные весы. Фиксируют сначала вес тары (банки под сметану или растительное масло), а затем чистый вес продукта и его стоимость.
- 23. Разработать устройство управления СВЧ-печью (часы с таймерами).
- 24. Разработать светофор со временем зеленого света, пропорциональным интенсивности движения автомобилей через магистраль.

5.6. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.6.

Таблица 5.6 – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов (тем) дисциплины	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля		
	1 семестр					
1 Программный комплекс класса EDA,	Выполнение творческого задания	6	ПК-4, ПК-11	Творческое задание		
предназначенный для разработки электрических схем и	Подготовка к тестированию	2	ПК-4, ПК-11	Тестирование		
печатных плат.	Итого	8				

2 Разработка библиотек элементов и их	Подготовка к тестированию	8	ПК-4, ПК-11	Тестирование
футпринтов	Выполнение	4	ПК-4	Творческое
	творческого задания			задание
	Итого	12		
3 Разработка	Подготовка к	8	ПК-4, ПК-11	Тестирование
электрических и	тестированию		·	_
принципиальных схем с	Выполнение	4	ПК-4	Творческое
несколькими листами	творческого задания			задание
	Итого	12		
4 Расчет волновых	Подготовка к	8	ПК-4, ПК-11	Тестирование
сопротивлений	тестированию		,	1
проводников (импеданс)	Выполнение	4	ПК-4	Творческое
для многослойных ВЧ	творческого задания			задание
печатных плат	Итого	12		
5 Проектирование	Подготовка к	8	ПК-4, ПК-11	Тестирование
многослойных ВЧ	тестированию	-	, ==== = 1	F
печатных плат под	Выполнение	4	ПК-4	Творческое
конкретный тех процесс	творческого задания	4	11117-4	задание
с учетом правил				задание
трассировки	Итого	12		
6 Классификация	Подготовка к	8	ПК-4, ПК-11	Тестирование
микропроцессоров,	тестированию			
варианты архитектуры,				
общая структура и				
принципы	Итого	8		
функционирования				
устройств и систем	П		HIC 4 HIC 11	T
7 Компиляторы и	Подготовка к	8	ПК-4, ПК-11	Тестирование
симуляторы, принципы отладки и поиска ошибок	тестированию	0		
	Итого	8	FIG A FIG 11	T.
8 Подключение и	Выполнение	8	ПК-4, ПК-11	Творческое
управление	творческого задания			задание
периферийными устройствами с	Подготовка к	2	ПК-4, ПК-11	Тестирование
микроконтроллера	тестированию	2	11K-4, 11K-11	тестирование
(датчики измерения	Тестированию			
физических величин,		4.0		
	Итого	10		
± ′	Итого	10		
двигатели, выключатели)		82		
± ′	Итого за семестр	82		Экзамен
± ′				Экзамен
*	Итого за семестр Подготовка и сдача экзамена	82 36		Экзамен
двигатели, выключатели)	Итого за семестр Подготовка и сдача экзамена 2 сем	82 36	ПК-4	
двигатели, выключатели) 9 Курсовой пр	Итого за семестр Подготовка и сдача экзамена 2 сем	82 36	ПК-4	Курсовой
двигатели, выключатели)	Итого за семестр Подготовка и сдача экзамена 2 сем	82 36	ПК-4	
двигатели, выключатели) 9 Курсовой пр Конкретизация	Итого за семестр Подготовка и сдача экзамена 2 сем	82 36	ПК-4	Курсовой проект, Отчет

10 Курсовой пр Рекомендации по разработке функциональной схемы устройства	Написание отчета по курсовому проекту Итого	4	ПК-4	Курсовой проект, Отчет по курсовому проекту
11 Курсовой пр Рекомендации по разработке блок-схемы алгоритма программы	Написание отчета по курсовому проекту	2	ПК-4	Курсовой проект, Отчет по курсовому проекту
	Итого	2		1 3
12 Курсовой пр Рекомендации по разработке схемы электрической	Написание отчета по курсовому проекту	4	ПК-4	Курсовой проект, Отчет по курсовому проекту
принципиальной	Итого	4		
13 Курсовой пр Рекомендации по разработке прикладной программы	Написание отчета по курсовому проекту	4	ПК-4	Курсовой проект, Отчет по курсовому проекту
	Итого	4		1 3
14 Курсовой пр Пример оформления пояснительной записки и графических материалов	Написание отчета по курсовому проекту	2	ПК-4	Курсовой проект, Отчет по курсовому проекту
	Итого	2		,
	Итого за семестр	18		
	Итого	136		

5.7. Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности

Соответствие компетенций, формируемых при изучении дисциплины, и видов учебной деятельности представлено в таблице 5.7.

Таблица 5.7 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Формануомило	Виды учебной деятельности				
Формируемые компетенции	Лек.	Прак.	Курс.	Сам.	Формы контроля
компетенции	зан.	зан.	пр.	раб.	
ПК-4	+	+	+	+	Курсовой проект, Отчет по курсовому
					проекту, Творческое задание,
					Тестирование, Экзамен
ПК-11	+			+	Творческое задание, Тестирование,
					Экзамен

6. Рейтинговая система для оценки успеваемости обучающихся

6.1. Балльные оценки для форм контроля

Балльные оценки для форм контроля представлены в таблице 6.1. Таблица 6.1 – Балльные оценки

Формы контроля	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр		
	1 семестр					
Тестирование	5	5	5	15		
Творческое задание	15	15	25	55		
Экзамен				30		
Итого максимум за период	20	20	30	100		
Нарастающим итогом	20	40	70	100		

Балльные оценки для курсового проекта представлены в таблице 6.1.1.

Таблица 6.1.1 – Балльные оценки для курсового проекта

Формы контроля	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр	
2 семестр					
Отчет по курсовому проекту	30	30	40	100	
Итого максимум за период	30	30	40	100	
Нарастающим итогом	30	60	100	100	

6.2. Пересчет баллов в оценки за текущий контроль

Пересчет баллов в оценки за текущий контроль представлен в таблице 6.2.

Таблица 6.2 – Пересчет баллов в оценки за текущий контроль

Баллы на дату текущего контроля	
≥ 90% от максимальной суммы баллов на дату ТК	
От 70% до 89% от максимальной суммы баллов на дату ТК	4
От 60% до 69% от максимальной суммы баллов на дату ТК	
< 60% от максимальной суммы баллов на дату ТК	2

6.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 6.3.

Таблица 6.3 – Пересчет суммы баллов в традиционную и международную оценку

Оценка	Итоговая сумма баллов, учитывает успешно сданный экзамен	
5 (отлично) (зачтено)	90 – 100	А (отлично)
4 (хорошо) (зачтено)	85 – 89	В (очень хорошо)
	75 – 84	С (хорошо)
	70 – 74	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	65 – 69	
	60 – 64	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

- 1. Методология системотехнического проектирования электронных и радиоэлектронных средств (в двух частях): Учебное пособие для бакалавриата, специалитета и магистратуры / Н. Н. Кривин 2022. 589 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/10141.
- 2. В. Я. Хартов. Микропроцессорные системы: учебное пособие для вузов М.: Академия, 2010. 352 с.: ил. (Высшее профессиональное образование. Информатика и вычислительная техника). Библиогр.: с. 347-348. ISBN 9785-7695-7028-5 (наличие в библиотеке ТУСУР 16 экз.).
- 3. Altium designer. Solidworks [Текст]: учебное пособие по практическим занятиям / Д. В. Озеркин; Минобрнауки России (М.), Томский государственный университет систем управления и радиоэлектроники (Томск). Томск: Изд-во ТУСУРа, 2017. 280 с: рис., табл. эл. опт. диск (СD-ROM). Библиогр.: с. 275-276. ISBN 978-5-86889-764-1 (наличие в библиотеке ТУСУР 10 экз.).
- 4. Лопаткин, Александр Викторович. Проектирование печатных плат в системе Altium Designer [Электронный ресурс]: учебное пособие для практических занятий / А. В. Лопаткин; ред., худож. Д. А. Мовчан. 2-е изд., испр. и доп. Электрон. текстовые дан. М.: ДМК Пресс, 2017. on-line: цв. ил., рис., табл. Библиогр.: с. 16. ISBN 978-5-97060-509-7: Б. ц. [Электронный ресурс]: Режим доступа: https://e.lanbook.com/reader/book/97334/#2.

7.2. Дополнительная литература

- 1. Рождественский Д.А. Микропроцессорные устройства в системах управления: Учебное пособие. Томск: Томский межвузовский центр дистанционного образования, 2003. 130 с. (наличие в библиотеке ТУСУР 96 экз.).
- 2. Русанов В.В., Шевелев М.Ю. Микропроцессорные устройства и системы: Руководство к выполнению лабораторных работ для студентов специальности «Промышленная электроника». Томск: ТУСУР, 2012. 23 с. [Электронный ресурс]: Режим доступа: http://edu.tusur.ru/training/publications/865.

7.3. Учебно-методические пособия

7.3.1. Обязательные учебно-методические пособия

- 1. Интерфейсы микропроцессорных систем: Методические указания по проведению лабораторных работ для студентов всех форм обучения технических специальностей / О. В. Килина, А. А. Зоркальцев 2022. 8 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/10193.
- 2. Интерфейсы микропроцессорных систем: Методические указания для самостоятельной работы студентам всех форм обучения технических специальностей / О. В. Килина, А. А. Зоркальцев 2022. 9 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/10203.
- 3. Системы автоматизированного проектирования: Методические указания по выполнению курсовой работы / М. Е. Антипин 2018. 7 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/8750.
- 4. Altium Designer. SolidWorks. Часть 1. Разработка элементной базы: Сборник практических заданий по проектированию печатных узлов РЭС / Д. В. Озеркин 2012. 66 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/1556.
- 5. Altium Designer. SolidWorks. Часть 2. Схемотехническое проектирование: Сборник практических заданий по проектированию печатных узлов РЭС / Д. В. Озеркин 2012. 50 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/1554.
- 6. Altium Designer. SolidWorks. Часть 3. Топологическое проектирование: Сборник практических заданий по проектированию печатных узлов РЭС / Д. В. Озеркин 2012. 95 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/1558.
- 7. Разработка конструкции функционального узла РЭС в системе САПР PCAD: Методическое пособие для выполнения практического занятия / А. К. Кондаков 2010. 17 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/1049.

7.3.2. Учебно-методические пособия для лиц

с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

7.4. Современные профессиональные базы данных и информационные справочные системы

1. При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/ru/resursy/bazy-dannyh.

8. Материально-техническое и программное обеспечение дисциплины

8.1. Материально-техническое и программное обеспечение для лекционных занятий

Для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется учебная аудитория с достаточным количеством посадочных мест для учебной группы, оборудованная доской и стандартной учебной мебелью. Имеются мультимедийное оборудование и учебно-наглядные пособия, обеспечивающие тематические иллюстрации по лекционным разделам дисциплины.

8.2. Материально-техническое и программное обеспечение для практических занятий

Лаборатория микропроцессорных устройств и систем / Лаборатория ГПО: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ); 634034, Томская область, г. Томск, Вершинина улица, д. 74, 333 ауд.

Описание имеющегося оборудования:

- Лабораторные макеты (10 шт.);
- Микропроцессорный модуль «SDK-1.1» (8 шт.);
- Осциллографы (12 шт.);
- Генератор сигналов Г3-54 (2 шт.);
- Компьютер Intel(R) Core (TM)2 CPU (12 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Лаборатория микропроцессорных устройств и систем / Лаборатория ГПО: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ); 634034, Томская область, г. Томск, Вершинина улица, д. 74, 333 ауд.

Описание имеющегося оборудования:

- Лабораторные макеты (10 шт.);
- Микропроцессорный модуль «SDK-1.1» (8 шт.);
- Осциллографы (12 шт.);
- Генератор сигналов Г3-54 (2 шт.);
- Компьютер Intel(R) Core (TM)2 CPU (12 шт.);
- Комплект специализированной учебной мебели;

- Рабочее место преподавателя.

Лаборатория микропроцессорных устройств и систем / Лаборатория ГПО: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ); 634034, Томская область, г. Томск, Вершинина улица, д. 74, 333 ауд.

Описание имеющегося оборудования:

- Лабораторные макеты (10 шт.);
- Микропроцессорный модуль «SDK-1.1» (8 шт.);
- Осциллографы (12 шт.);
- Генератор сигналов Г3-54 (2 шт.);
- Компьютер Intel(R) Core (TM)2 CPU (12 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- Google Chrome;
- LTspice 4;
- Mathworks Matlab;
- Virtual PC 2007;
- VirtualBox;

Лаборатория микропроцессорных устройств и систем / Лаборатория ГПО: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ); 634034, Томская область, г. Томск, Вершинина улица, д. 74, 333 ауд.

Описание имеющегося оборудования:

- Лабораторные макеты (10 шт.);
- Микропроцессорный модуль «SDK-1.1» (8 шт.);
- Осциллографы (12 шт.);
- Генератор сигналов Г3-54 (2 шт.);
- Компьютер Intel(R) Core (TM)2 CPU (12 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- LTspice 4;
- VirtualBox;

8.3. Материально-техническое и программное обеспечение для курсового проекта

Лаборатория микропроцессорных устройств и систем / Лаборатория ГПО: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, учебная аудитория для проведения занятий семинарского типа, помещение для курсового проектирования (выполнения курсовых работ); 634034, Томская область, г. Томск, Вершинина улица, д. 74, 333 ауд.

Описание имеющегося оборудования:

- Лабораторные макеты (10 шт.);
- Микропроцессорный модуль «SDK-1.1» (8 шт.);
- Осциллографы (12 шт.);
- Генератор сигналов Г3-54 (2 шт.);
- Компьютер Intel(R) Core (TM)2 CPU (12 шт.);
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

Программное обеспечение:

- 7-Zip;
- ASIMEC;

- AVR Code Vision 3.31Evaluation;
- LTspice 4;
- Mathworks Matlab;

8.4. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;
- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip:
- Google Chrome.

8.5. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с **нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с нарушениями зрения предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

9. Оценочные материалы и методические рекомендации по организации изучения дисциплины

9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

Названия разделов (тем) дисциплины	Формируемые компетенции	Формы контроля	Оценочные материалы (ОМ)
------------------------------------	----------------------------	----------------	--------------------------

1 Программный комплекс класса EDA, предназначенный	ПК-11, ПК-4	Тестирование	Примерный перечень тестовых заданий
для разработки электрических схем и печатных плат.		Экзамен	Перечень экзаменационных вопросов
		Творческое задание	Примерный перечень тем для творческих заданий
2 Разработка библиотек элементов и их футпринтов	ПК-11, ПК-4	Тестирование	Примерный перечень тестовых заданий
		Экзамен	Перечень экзаменационных вопросов
		Творческое задание	Примерный перечень тем для творческих заданий
3 Разработка электрических и принципиальных схем с	ПК-11, ПК-4	Тестирование	Примерный перечень тестовых заданий
несколькими листами		Экзамен	Перечень экзаменационных вопросов
		Творческое задание	Примерный перечень тем для творческих заданий
4 Расчет волновых сопротивлений проводников	ПК-11, ПК-4	Тестирование	Примерный перечень тестовых заданий
(импеданс) для многослойных ВЧ печатных плат		Экзамен	Перечень экзаменационных вопросов
		Творческое задание	Примерный перечень тем для творческих заданий
5 Проектирование многослойных ВЧ печатных	ПК-11, ПК-4	Тестирование	Примерный перечень тестовых заданий
плат под конкретный тех процесс с учетом правил		Экзамен	Перечень экзаменационных вопросов
трассировки		Творческое задание	Примерный перечень тем для творческих заданий
6 Классификация микропроцессоров, варианты архитектуры, общая структура	ПК-11, ПК-4	Тестирование	Примерный перечень тестовых заданий
и принципы функционирования устройств и систем		Экзамен	Перечень экзаменационных вопросов
7 Компиляторы и симуляторы, принципы отладки и поиска	ПК-11, ПК-4	Тестирование	Примерный перечень тестовых заданий
ошибок		Экзамен	Перечень экзаменационных вопросов
8 Подключение и управление периферийными	ПК-11, ПК-4	Тестирование	Примерный перечень тестовых заданий
устройствами с микроконтроллера (датчики		Экзамен	Перечень экзаменационных вопросов
измерения физических величин, двигатели, выключатели)		Творческое задание	Примерный перечень тем для творческих заданий

9 Курсовой пр Конкретизация технического задания 10 Курсовой пр Рекомендации по разработке функциональной схемы устройства	ПК-4	Отчет по курсовому проекту Отчет по курсовому проекту	Примерный перечень тематик курсовых проектов Примерный перечень тематик курсовых проектов
11 Курсовой пр Рекомендации по разработке блок-схемы алгоритма программы	ПК-4	Отчет по курсовому проекту	Примерный перечень тематик курсовых проектов
12 Курсовой пр Рекомендации по разработке схемы электрической принципиальной	ПК-4	Отчет по курсовому проекту	Примерный перечень тематик курсовых проектов
13 Курсовой пр Рекомендации по разработке прикладной программы	ПК-4	Отчет по курсовому проекту	Примерный перечень тематик курсовых проектов
14 Курсовой пр Пример оформления пояснительной записки и графических материалов	ПК-4	Отчет по курсовому проекту	Примерный перечень тематик курсовых проектов

Шкала оценки сформированности отдельных планируемых результатов обучения по дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по

дисциплине

7.10-7.11111				
		Формулировка требований к степени сформированности		
Оценка	Баллы за ОМ	планируемых результатов обучения		
		знать	уметь	владеть
2	< 60% от	отсутствие знаний	отсутствие	отсутствие
(неудовлетворительно)	максимальной	или фрагментарные	умений или	навыков или
	суммы баллов	знания	частично	фрагментарные
			освоенное	применение
			умение	навыков
3	от 60% до	общие, но не	в целом успешно,	в целом
(удовлетворительно)	69% от	структурированные	но не	успешное, но не
	максимальной	знания	систематически	систематическое
	суммы баллов		осуществляемое	применение
			умение	навыков
4 (хорошо)	от 70% до	сформированные,	в целом	в целом
	89% от	но содержащие	успешное, но	успешное, но
	максимальной	отдельные	содержащие	содержащие
	суммы баллов	проблемы знания	отдельные	отдельные
			пробелы умение	пробелы
				применение
				навыков
5 (отлично)	≥ 90% ot	сформированные	сформированное	успешное и
	максимальной	систематические	умение	систематическое
	суммы баллов	знания		применение
				навыков

Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3.

Таблица 9.3 – Шкала комплексной оценки сформированности компетенций

Оценка	Формулировка требований к степени компетенции
2	Не имеет необходимых представлений о проверяемом материале
(неудовлетворительно)	
(поддовнотворительно)	Знать на уровне ориентирования, представлений. Обучающийся знает
	основные признаки или термины изучаемого элемента содержания, их
	отнесенность к определенной науке, отрасли или объектам, узнает в
	текстах, изображениях или схемах и знает, к каким источникам нужно
	обращаться для более детального его усвоения.
3	Знать и уметь на репродуктивном уровне. Обучающихся знает
(удовлетворительно)	изученный элемент содержания репродуктивно: произвольно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях.
4 (хорошо)	Знать, уметь, владеть на аналитическом уровне. Зная на
, •	репродуктивном уровне, указывать на особенности и взаимосвязи
	изученных объектов, на их достоинства, ограничения, историю и
	перспективы развития и особенности для разных объектов усвоения.
5 (отлично)	Знать, уметь, владеть на системном уровне. Обучающийся знает
, , ,	изученный элемент содержания системно, произвольно и доказательно
	воспроизводит свои знания устно, письменно или в демонстрируемых
	действиях, учитывая и указывая связи и зависимости между этим
	элементом и другими элементами содержания дисциплины, его
	значимость в содержании дисциплины.

9.1.1. Примерный перечень тестовых заданий

- 1. Программатор JTAG позволяет:
 - а) Только программировать микроконтроллер
 - б) Программировать и проводить отладку
 - в) Использовать параллельное высоковольтное программирование
 - г) Только просматривать внутренне содержимое регистров МК
- 2. Что реализует возможности возврата из подпрограммы к основной программе:
 - а) Прерывания
 - б) Стек
 - в) Программный счетчик
 - г) Таймер
- 3. Стек в микроконтроллере работает по принципу:
 - а) последний пришел первый ушел
 - б) первый пришел последний ушел
 - в) первый пришел первый ушел
 - г) последний пришел последний ушел
- 4. Директива .include:
 - а) присваивает символьному имени некоторое числовое значение
 - б) указывает ассемблеру место окончания файла исходного текста
 - в) подставляет текстовый файл в то место программы, где происходит ее употребление
 - г) записывает переменную
- 5. Какая команда имеет больший приоритет вы выполнится первой «Побитное И(&)» либо «Побитное ИЛИ(|)»:
 - а) Побитное И(&)
 - б) Побитное ИЛИ()
 - в) Одинаковый приоритет
 - г) Нет верного ответа
- 6. Какие команды имеют больший приоритет и вы выполнятся первыми «Побитное отрицание (~) с Логическим отрицанием (!)» либо «Умножение (*) с Делением (/)»:

- а) Умножение (*) с Делением (/) б) Побитное отрицание (~) с Логическим отрицанием (!) в) Одинаковый приоритет г) Нет верного ответа 7. Что произойдет в микроконтроллере, если в результате выполнения операции произошел выход за границы байта, например, при умножении либо сложении? а) Установится флаг переноса (С) в регистре состояния б) Установится флаг отрицательного значения (N) в регистре состояния в) Сбросится флаг потетрадного переноса (Н) в регистре состояния г) Произойдет зависание микроконтроллера 8. Что произойдет с переменной X в команде X%=Y? а) Запишется процент от Y б) Запишется логическое И в) Запишется остаток от деления г) Запишется целая часть от деления 9. Что будет записано в переменной X после деления X = 5/2, если X целое беззнаковое число a) 2,5 б) 1 в) 2 г) 4 10. Что будет записано в переменной C после выполнения операции C = ((5 << 3) >> 1)a) 0x03 б) 0x14 в) 0x20 г) 0x00 11. Что будет записано в переменной C после выполнения операции $C = (1 << 6) \mid (1 << 3) \mid (1 << 3) \mid (1 << 4) \mid (1 <<$ << 1), если в С было записано число 7. a) 0b000100101 б) 0x74 в) 74 r) 0 12. Что будет записано в переменной PORTC после выполнения операции PORTC = (1 << 2)(1 << 3), если в PORTC было записано число 7. a) 0b00001111 б) 0b00011111 в) 0b00001011 г) 0b0000000 13. Что будет записано в переменной PORTA после выполнения операции PORTA $\&=\sim (1 <<$ 5) | (1 << 1), если в PORTA было записано число 7. a) 0b00010110 б) 0b00000101 в) 0b00101101 г) 0b00000000 14. Что будет записано в переменной С после выполнения операции char stroka[6]="Hello"; С = stroka[1];а) ACSII код буквы «е» б) 0x0e в) 0b00000101 г) 'Н'
- 15. Какой порядок следования объявлений в структуре программы на языке Си?
 а) # include, Прерывания { }, Фунцкции { }, Объявление глобальных переменных, int main() { }
 б) # include, Объявление глобальных переменных, int main() { }, Прерывания { }, Фунцкции { },
 в) # include, Объявление глобальных переменных, Фунцкции { }, Прерывания { }, int main() { }

- г) Прерывания $\{\ \}$, Фунцкции $\{\ \}$, Объявление глобальных переменных, int main() $\{\ \}$, # include,
- 16. Укажите запись, при написании которой произойдет изменение переменной С
 - a) // C = 0x8A
 - б) C = 0x8A //
 - B) /* C = 0x8A*/
 - Γ) A = C
- 17. Укажите условие не бесконечного цикла
 - a) while $(5)\{i++\}$
 - 6) for(;;){i++}
 - B) while(i) $\{i++\}$
 - г) if(i)
- 18. Задачи компилятора:
 - а) Трансляция программы, составленной на исходном языке высокого уровня, в эквивалентную программу на низкоуровневом языке
 - б) Трансляция и отладка программы, составленной на исходном языке высокого уровня, в эквивалентную программу на низкоуровневом языке
 - в) Проверка программы, составленной на исходном языке высокого уровня, в эквивалентную программу на низкоуровневом языке
 - г) Только программирование микроконтроллера
- 19. Что будет выставлено на порту B atmega 16 при записи PORTB = dig[0]?
 - а) Значение указателя, записанное в массиве dig, по номеру 0
 - б) Значение числа, записанное в массиве dig, по номеру 0
 - в) Значение массива
 - г) Порт будет установлен в 0 (GND).
- 20. Что произойдет при выполнении команды PORTB |= (1<< PORTB0) в atmega 16
 - а) На выводе PORTB0 появится напряжение питания микроконтроллера
 - б) На порту PORTB установится высокое состояние («единица»)
 - в) Вывод PORTB0 будет настроен на выход
 - г) Вывод PORTB0 будет настроен на вход
- 21. Что произойдет при выполнении команды UDR = PINB в atmega 16
 - а) Произойдет настройка скорости UART передатчика
 - б) Считанные значения с восьми ножек порта в двоичном виде будут записаны в UART буфер
 - в) Такая команда не поддерживается
 - г) Сравнение переменных
- 22. Что произойдет при выполнении команды TCCR2B = (1<<CS12) | (0<<CS11) | (1 << CS10) в atmega 16
 - а) Команда поддерживается только таймером 1
 - б) Произойдет настройка делителя таймера в 1024, что приведет к ускорению счета таймера в 1024 раза
 - в) Произойдет настройка делителя таймера в 1024, что приведет к замедлению счета таймера в 1024 раза
 - г) Считается значение таймера
- 23. Что произойдет при выполнении команды if(TIFR & (1<<TOV1)) в atmega 16
 - а) Произойдет вызов прерывания
 - б) Проверка флага прерывания таймера
 - в) Произойдет сброс флага прерывания таймера 1
 - г) Установка флага прерывания
- 24. Что произойдет при выполнении команды TIMSK |= (1<<TOIE0) в atmega 16
 - а) Разрешение прерывания, когда таймер досчитает до 256
 - б) Разрешение прерывания, когда таймер досчитает до 65536
 - в) Разрешение прерывания по совпадению с уровнем 255
 - г) Запрещение прерывания
- 25. Что произойдет при выполнении команды UCSRB = 0x08 в atmega 16
 - а) Произойдет разрешение приема и передачи данных в UART модуле
 - б) Сразу вызовется прерывание от приемопередатчика

- в) При наличии данных в буфере приема / передачи UDR начнется их передача согласно настройкам
- г) Сравнение переменных
- 26. Какая команда позволяет задержать дальнейшее выполнение команд микропрограммы, пока не будут отправлены все данные в UART в atmega 16
 - a) If(!(UCSRA & (1<<RXC)))
 - б) while (!(UCSRA & (1<<RXС)))
 - в) while (!(UCSRA & (1<<UDRE)))
 - r) while (!(UCSRA | (1<<UDRE)))
- 27. Что увеличит относительное время паузы между передачами для синхронизации передаваемых данных в UART в atmega 16
 - а) Бит USBS в регистре UCSRC
 - б) Байты UBRRL и UBRRH, задания скорости
 - в) Бит UPM1 и UPM0, определяющие функционирование схем контроля и формирования четности
 - г) Регистр UCSRC
- 28. Какие настройки модуля АЦП позволят оцифровать входной сигнал амплитудой до 2,56B при отсутствии напряжения на ножке AREF в atmega 16
 - a) ADMUX &= $\sim (1 << REFS1) | (1 << REFS0)$
 - 6) ADMUX = (1 << REFS1) | (1 << REFS0)
 - B) $ADMUX = 0x00 \mid (1 \le REFS0)$
 - Γ) ADMUX &= \sim (1<<REFS1)
- 29. Какое число нужно записать в настройки АЦП преобразователя, чтобы измеряемый сигнал был разностью на ножках ADC1 и ADC0 и был усилен в 10 раз в atmega 16
 - a) ADMUX = 0x09
 - 6) ADMUX = 0x00|(1 << ADC0)|(1 << ADC1)|
 - B) ADCSRA = 0xCD
 - Γ) ADMUX = 10
- 30. Установка какого бита позволяет настроить АЦП на автоматический перезапуск после окончания оцифровки в atmega 16
 - a) $ADMUX = (1 \le ADEN)$
 - б) ADMUX |= (1<< ADEN)
 - B) ADMUX = (1 << ADATE)
 - Γ) ADMUX &= (1<< ADATE)

9.1.2. Перечень экзаменационных вопросов

- 1. Технологии изготовление многослойных печатных плат
- 2. Импеданс цепи, сопротивление, согласование длинных линий.
- 3. Этапы разработки от схемотехники до готовой печатной платы. Программы Altium, P-Cad, Ki-kad
- 4. Основы и особенности языка программирования АТ-команд (интерфейс, физический, логический уровень)
- 5. Подключение к микроконтроллеру сложных готовых устройств (GSM модемов, Bluetooth модулей, радио модулей LoraWan)
- 6. Арифметические операции в Си. Описание, примеры, особенности
- 7. Операторы сравнения. Описание, примеры, особенности
- 8. Логические операции. Описание, примеры, особенности
- 9. if(){}else{}; Описание, примеры, особенности
- 10. while(){}; Описание, примеры, особенности
- 11. for(;;){};Описание, примеры, особенности
- 12. switch(){};Описание, примеры, особенности
- 13. Структура программы на языке Си
- 14. Наиболее часто используемые типы данных. Размерность, примеры.
- 15. Пример массива. Пример матрицы.
- 16. Описание функций-обработчиков прерываний
- 17. Составить 2 функции реализации параллельного интерфейса. Первая должна выводить в порт С данные из массива char OUT[8], вторая считывать из порта С данные в массив char

- IN[8]. Размер отправляемых/принимаемых данных передается в функции.
- 18. Дана клавиатура с 8 кнопками, подключенными напрямую к порту А. Написать процедуру опроса с программной фильтрацией дребезга контактов, возвращающая статус кнопок (return KeyStatus).
- 19. Написать функцию, получающую двоичное число на вход и возвращающая (return Led) необходимый код семисегментного индикатора для отображения числа. Преобразование чисел от 0-9.
- 20. Дан массив unsigned char $X[] = \text{``A,}\Gamma,E,F,L,O\text{''},$ представляющий собой ASCII код букв.
- 21. Вывести буквы на 6 разрядный сегментный индикатор. Подключение индикатора к микроконтроллеру произвольное. Модель и тип семисегментного индикатора любой.
- 22. Дан массив unsigned char X размера n. Оставить в массиве числа, удовлетворяющие условию min < X[i] < max, не удовлетворяющие удалить, сдвинув оставшиеся. Пример: "1,2,3,4,5,6,7,8,9,0" => удаляем 1 и 0 => "2,3,4,5,6,7,8,9"
- 23. Написать функцию, подсчитывающую среднее квадратичное целого массива unsigned int X[128]. Предварительно объявив и, при необходимости, инициализировав переменные. Массив представляет полученные значения с 16 разрядной АЦП.
- 24. Написать процедуру преобразования квадратной матрицы в массив. Задана матрица А размерностью n*m. Записать все элементы матрицы в одномерный массив В построчно, начиная с конца. Переменные int
- 25. Написать процедуру преобразования квадратной матрицы в массив. Задана матрица А размерностью n*m. Записать все элементы матрицы в одномерный массив В по столбцам, начиная с конца. Переменные int
- 26. Результаты оцифровки разных напряжений представлены в виде матрицы 5х3 (5 напряжений по 3 замера у каждого). Указать в одномерном отдельном массиве X, среднее значение каждого напряжения. Значения с АЦП представлены в «сыром» необработанном виде.
- 27. Результаты оцифровки разных напряжений представлены в виде матрицы 5х3 (5 напряжений по 3 замера у каждого). Указать в одномерном отдельном массиве МАХ, максимальное значение каждого напряжения, а в массиве МІN минимальное. Значения с АЦП представлены в «сыром» необработанном виде.
- 28. Написать функцию, разбивающую 8-значное число на отдельные знаки и записать в массив. Например, число K = 87654321 = > преобразуем в массив, у которого X[0]=8, X[1]=7, X[2]=6... X[7]=1. Предполагая использовать функцию для вывода на 8значный семисегментный дисплей чисел.
- 29. Написать функцию, принимающую на вход ASCII код цифр и возвращающую (return Znak) ASCII код специальных символов. Предполагая использовать функцию для преобразования и вывода информации в графических LCD индикаторах. Maccub unsigned char Chisla[] = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "0"}, Maccub unsigned char Znak[] = {"!", "@", "#", "\$", "%", "%", "%", "*", "(", ")"}. Пример: «1» => !
- 30. Написать функцию, которая должна добавлять к массиву К (представляющему число, разбитое на отдельные знаки), справа ASCII код цифры D (D целочисленное значение в диапазоне 0-9. Например, D=0. массив X[0]=1, X[1]=5, X[2]=6 => добавляем код символа => X[3]=48. ASCII код 0=48, 1=49, 2=50, 3=51.... 9=57.
- 31. Написать функцию, в которой происходит непрерывное считывание данных с последовательного интерфейса UART в переменную unsigned char BUF. Обновление данных в переменной BUF происходит с установлением флага unsigned char FLAG. Если в посылке встречается число 0xC0 (END), то со следующего числа начинать писать в массив unsigned char DATA[128], до тех пор, пока снова не встретится число 0xC0 (END). (Реализация протокола обмена SLIP)
- 32. Дан массив unsigned char BUF [64]. Скопировать в массив unsigned char DATA[256]. Если при копировании встретится число 0xC0 (END) заменить его двумя числами (0xDB, 0xDC). Если при копировании встретится число ESC (0xDB) числами (0xDB, 0xDD). (Реализация протокола обмена SLIP) Пример: BUF[64] = {0xAA, 0xBB, 0xC0, 0xCC ...} => DATA[256]= {0xAA, 0xBB, 0xDB, 0xDC, 0xCC ...}

9.1.3. Примерный перечень вопросов для защиты курсового проекта

- 1. Основные варианты архитектуры и структуры сложных устройств
- 2. Классификация современных микропроцессоров и микроконтроллеров по функциональному признаку
- 3. Общее описание процесса проектирования модульных систем
- 4. Классификация методик проектирования электронных схем
- 5. Области применения специализированных интегральных схем
- 6. Классификация современных микропроцессоров и микроконтроллеров по функциональному признаку
- 7. Общее описание процесса проектирования модульных систем
- 8. Классификация методик проектирования электронных схем
- 9. Области применения специализированных интегральных схем
- 10. Арифметические и логические операции
- 11. Операторы сравнения
- 12. Ходовые конструкции
- 13. Структура программы
- 14. Объявление переменных

9.1.4. Примерный перечень тематик курсовых проектов

- 1. Спроектировать многоканальную систему регулирования температуры в теплице. Включает восемь датчиков температуры и нагревателей. Значение стабилизируемой температуры задается в диапазоне от 10 до 40 □С. Индикация выходных сигналов на включение нагревателей с помощью линейки светодиодов. На цифровое табло вывести температуру объекта, номер которого набран на программном переключателе.
- 2. Спроектировать измеритель частоты сети с точностью до десятых долей герца при времени измерения не более одной секунды. Информация должна дублироваться на выносном табло, связь с которым осуществляется с помощью трехпроводной линии связи.
- 3. Разработать устройство охранной сигнализации. Число охраняемых объектов до 64. Устройство должно сохранять свою работоспособность при выключении сети. При нажатии кнопки «Запрос» на цифровые индикаторы последовательно выводятся номера объектов, в которых возникал сигнал «Тревога».
- 4. Спроектировать устройство контроля интенсивности движения через мост. По запросу внешнего устройства выводит на цифровые индикаторы час пик и количество автомобилей, прошедших через мост в этот час.
- 5. Спроектировать устройство управления звонком на занятия. Должно реализовать реальную сетку расписания школьных звонков, индикацию текущего времени.
- 6. Спроектировать устройство для измерения потребляемой электроэнергии в любой сети постоянного тока (до 10 000 кВтч).
- 7. Разработать часы электронные со звуковым сигналом.
- 8. Разработать цифровой автомобильный спидометр (три десятичных разряда).
- 9. Частота импульсов на выходе генератора в герцах от 1 до 99 должна быть равна числу на программном переключателе и отображаться на цифровых индикаторах. Длительность импульсов 100 мкс.
- 10. Спроектировать измеритель частоты вращения ротора двигателя. Диапазон измерения (100—10000 об/мин). Импульсный датчик вырабатывает 96 импульсов за каждый оборот. Время измерения не более трех оборотов ротора.
- 11. Разработать электронное устройство управления инкубатором. Точность задания и стабилизации температуры 0,1 □С. Через каждый час обеспечить изменение положения яиц путем поворота на 45 □. Предусмотреть цифровую индикацию температуры. Для аналого-цифрового преобразования сигнала использовать метод двухтактного интегрирования.
- 12. Спроектировать многоканальную систему регулирования температуры в теплице. Включает четыре датчика температуры и нагревателя. Значение стабилизируемой температуры задается в диапазоне от 10 до 40 □С. Индикация выходных сигналов на включение нагревателей с помощью линейки светодиодов. Для аналого-цифрового преобразования использовать метод двухтактного интегрирования.
- 13. Разработать электронный таймер с индикацией в режиме обратного счета установленного

- времени в часах и минутах. В течение заданного временного отрезка должен быть включен исполнительный элемент (зарядное устройство).
- 14. Спроектировать устройство контроля интенсивности движения автомобилей по автомагистрали. На цифровые индикаторы выводится текущее время и количество автомобилей, прошедших через магистраль с начала суток.
- 15. Разработать устройство охранной сигнализации квартир одного подъезда многоэтажного дома. Число охраняемых объектов до 16.
- 16. Спроектировать шахматные электронные часы для блиц-турнира.
- 17. Спроектировать устройство управления гудком на заводе. Должно реализовать реальную сетку расписания смен, обеденных перерывов, индикацию текущего времени.
- 18. Спроектировать электронные весы. Фиксируют вес и стоимость расфасованной порции продукта.
- 19. Спроектировать измеритель частоты пульса человека. Время измерения не более 3 секунд.
- 20. Спроектировать генератор пачек импульсов, следующих с частотой 10 Гц. Частота импульсов в пачке 10 кГц, число импульсов в пачке (от 1 до 100) набирается на лимбах программного переключателя и отображается на цифровых индикаторах. Длительность импульса 10 мкс.
- 21. Спроектировать счетчик потребляемой тепловой энергии.
- 22. Спроектировать электронные весы. Фиксируют сначала вес тары (банки под сметану или растительное масло), а затем чистый вес продукта и его стоимость.
- 23. Разработать устройство управления СВЧ-печью (часы с таймерами).
- 24. Разработать светофор со временем зеленого света, пропорциональным интенсивности движения автомобилей через магистраль.

9.1.5. Примерный перечень тем для творческих заданий

- 1. Разработка схемы электрической принципиальной в программном комплексе сквозного проектирования печатных плат
- 2. Расчет волнового сопротивления одиночного проводника или дифференциальной пары
- 3. Трассировка печатной платы в программном комплексе сквозного проектирования печатных плат с формированием комплекта конструкторской документации
- 4. Изучение контуров печатной платы, окон, диэлектрических барьеров и крепежных отверстий в программном комплексе сквозного проектирования печатных плат
- 5. 3D проектирование корпуса устройства для печати на 3d принтере с загрузкой 3d модели в среду сквозного проектирования.

9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;

– осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе / электронном журнале по дисциплине.

9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.2.

Таблица 9.2 – Дополнительные материалы оценивания для лиц с ограниченными

возможностями здоровья и инвалидов

	возможностими эдоровых и инвалидов				
Категории обучающихся	Виды дополнительных оценочных	Формы контроля и оценки			
	материалов	результатов обучения			
С нарушениями слуха	Тесты, письменные	Преимущественно письменная			
	самостоятельные работы, вопросы	проверка			
	к зачету, контрольные работы				
С нарушениями зрения	Собеседование по вопросам к	Преимущественно устная			
	зачету, опрос по терминам	проверка (индивидуально)			
С нарушениями опорно-	Решение дистанционных тестов,	Преимущественно			
двигательного аппарата	контрольные работы, письменные	дистанционными методами			
	самостоятельные работы, вопросы				
	к зачету				
С ограничениями по	Тесты, письменные	Преимущественно проверка			
общемедицинским	самостоятельные работы, вопросы	методами, определяющимися			
показаниям	к зачету, контрольные работы,	исходя из состояния			
	устные ответы	обучающегося на момент			
		проверки			

9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа:
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;

– в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры ПрЭ протокол № 15 от «28 » 10 2021 г.

СОГЛАСОВАНО:

Должность	Инициалы, фамилия	Подпись
Заведующий выпускающей каф. ПрЭ	С.Г. Михальченко	Согласовано, 706957f1-d2eb-4f94- b533-6139893cfd5a
Заведующий обеспечивающей каф. ПрЭ	С.Г. Михальченко	Согласовано, 706957f1-d2eb-4f94- b533-6139893cfd5a
Начальник учебного управления	Е.В. Саврук	Согласовано, fa63922b-1fce-4a6a- 845d-9ce7670b004c
ЭКСПЕРТЫ:		
Профессор, каф. ПрЭ	Н.С. Легостаев	Согласовано, 6332ca5f-c16e-4579- bbc4-ee49773dfd8d
Доцент, каф. ПрЭ	Д.О. Пахмурин	Согласовано, се9е048a-2a49-44a0- b2ab-bc9421935400
РАЗРАБОТАНО:		
Доцент, каф. ПрЭ	К.В. Бородин	Разработано, a125dd0b-6c3a-4a5b- b087-c233aa1fac6e