ДОКУМЕМИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Информация о владельце: ФИО: Сенчения расплывания образовательное учреждение высшего образования

Должность: Проректор по учебного СУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ Дата подписания: 17.06.2024 18:52:07 УПРАВ ПЕНИЯ И РА ЛИОЭЛЕКТРОНИКИ»

Уникальный программный ключ:

УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ»

27e516f4c088deb62ba68945f4406e13fd454355

(ТУСУР)

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В ЗАДАЧАХ ВЫЧИСЛИТЕЛЬНОЙ ЭЛЕКТРОДИНАМИКИ

Уровень образования: высшее образование - специалитет

Направление подготовки / специальность: 11.05.01 Радиоэлектронные системы и комплексы Направленность (профиль) / специализация: Антенные системы и сверхвысокочастотные устройства

Форма обучения: очная

Факультет: Радиотехнический факультет (РТФ)

Кафедра: сверхвысокочастотной и квантовой радиотехники (СВЧиКР)

Kypc: 5 Семестр: 10

Учебный план набора 2024 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	10 семестр	Всего	Единицы
Лекционные занятия	18	18	часов
Практические занятия	18	18	часов
Лабораторные занятия	24	24	часов
Самостоятельная работа	48	48	часов
Подготовка и сдача экзамена	36	36	часов
Общая трудоемкость	144	144	часов
(включая промежуточную аттестацию)	4	4	3.e.

Формы промежуточной аттестации	Семестр
Экзамен	10

1. Общие положения

1.1. Цели дисциплины

1. Сформировать у студентов комплексное представление о возможностях и ограничениях применения методов искусственного интеллекта (ИИ) в вычислительной электродинамике, оснастить их знаниями основных методов ИИ в этой области и развить практические навыки математического моделирования электродинамических систем с использованием ИИ и специализированного программного обеспечения.

1.2. Задачи дисциплины

- 1. Изучить основные типы задач вычислительной электродинамики, подходящие для решения с помощью ИИ.
- 2. Ознакомить студентов с основными методами машинного обучения, глубокого обучения и нейронных сетей, применимых в вычислительной электродинамике.
- 3. Дать студентам практический опыт применения методов ИИ для решения задач вычислительной электродинамики.
- 4. Развить навыки студентов в подготовке данных, необходимых для обучения моделей ИИ в электродинамике.
- 5. Научить студентов анализировать и интерпретировать результаты моделирования с помощью ИИ.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Модуль специализации (major).

Индекс дисциплины: Б1.В.02.17.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и инликаторы их лостижения

Компетенция	Индикаторы достижения компетенции			
Универсальные компетенции				
-	-			
Общепрофессиональные компетенции				
-	-			
Профессиональные компетенции				
ПК-6. Способен	ПК-6.1. Знает методы и алгоритмы моделирования процессов в			
выполнять	радиоэлектронике, радиотехнических системах и устройствах			
математическое				
моделирование	ПК-6.2. Умеет пользоваться типовыми методиками моделирования			
объектов и процессов	объектов и процессов			
по типовым методикам,	-			
в том числе с	ПК-6.3. Владеет средствами разработки и создания имитационных			
использованием	1 1			
пакетов прикладных	моделей с помощью стандартных пакетов прикладных программ			
программ				

4. Названия разделов (тем) дисциплины

Названия разделов (тем) дисциплины

10 семестр
То семестр
1 Основные уравнения теории электромагнитных полей
2 Электрофизические свойства сред
3 Использование базы данных
4 Применение машинного обучения
5 Контролируемое обучение при классификации
6 Обучение с подкреплением