ДОКУМЕНИИ СТЕРСТВО НАУКИЛИ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Информация о владельце:

информация о владельце:
ФИО: Федеральное государственное бюджетное образовательное учреждение высшего образования

Должность: Проректор по учебного СУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ Дата подписания: 19.06.2024 21:20:35 УПРАВ ПЕНИЯ И РА ЛИОЭЛЕКТРОНИКИ» УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ»

Уникальный программный ключ:

(ТУСУР) 27e516f4c088deb62ba68945f4406e13fd454355

УТВЕРЖДАЮ Проректор по УР

Документ подписан электронной подписью

Сертификат: a1119608-cdff-4455-b54e-5235117c185c Владелец: Сенченко Павел Васильевич

Действителен: с 17.09.2019 по 16.09.2024

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

КОГЕРЕНТНАЯ И НЕЛИНЕЙНАЯ ОПТИКА ФОТОННЫХ КРИСТАЛЛОВ

Уровень образования: высшее образование - магистратура

Направление полготовки / специальность: 12.04.03 Фотоника и оптоинформатика

Направленность (профиль) / специализация: Фотоника волноводных, нелинейных и

периодических структур Форма обучения: очная

Факультет: Факультет электронной техники (ФЭТ)

Кафедра: электронных приборов (ЭП)

Kypc: 1 Семестр: 2

Учебный план набора 2024 года

Объем дисциплины и виды учебной деятельности

Виды учебной деятельности	2 семестр	Всего	Единицы
Практические занятия	28	28	часов
в т.ч. в форме практической подготовки	10	10	часов
Самостоятельная работа	44	44	часов
Общая трудоемкость	72	72	часов
(включая промежуточную аттестацию)	2	2	3.e.

	Формы промежуточной аттестации	Семестр
Зачет		2

1. Общие положения

1.1. Цели дисциплины

1. Освоение студентами теоретических основ строения таких твердотельных материалов, как фотонные кристаллы, изучение их свойств, процессов и эффектов в них происходящих.

1.2. Задачи дисциплины

- 1. Изучение основ строения фотонных кристаллов.
- 2. Изучение основных характеристик и свойств фотонных кристаллов.
- 3. Изучение основных процессов и эффектов, происходящих в фотонных кристаллах.
- 4. Применение фотонных кристаллов в современных приборах и устройствах фотоники и оптоинформатики.

2. Место дисциплины в структуре ОПОП

Блок дисциплин: Б1. Дисциплины (модули).

Часть блока дисциплин: Часть, формируемая участниками образовательных отношений.

Модуль дисциплин: Модуль профессиональной подготовки (major).

Индекс дисциплины: Б1.В.01.01.05.

Реализуется с применением электронного обучения, дистанционных образовательных технологий.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 3.1):

Таблица 3.1 – Компетенции и индикаторы их достижения

Компетенция	Индикаторы достижения	Планируемые результаты обучения по			
Компетенция	компетенции	дисциплине			
	Универсальные ко	мпетенции			
-	-	-			
	Общепрофессиональны	е компетенции			
-	- -				
	Профессиональные к	сомпетенции			
ПК-1. Способен к	ПК-1.1. Знает численные	Знает базовые закономерности и			
построению	методы моделирования	соотношения, описывающие			
математических	приборов квантовой	распространение и взаимодействие			
моделей объектов	электроники и фотоники	электромагнитных волн в различных			
исследования и выбору		условиях, в том числе в основных			
численного метода их		элементах фотоники.			
моделирования,	ПК-1.2. Умеет определять	Умеет подбирать средства проведения			
разработке нового или	параметры	измерений, контроля и диагностики с			
выбор готового	разрабатываемого	учётом особенностей исследуемого узла и			
алгоритма решения	оптикоэлектронного	возможных диапазонов изменения			
задачи	прибора	параметров.			
	ПК-1.3. Владеет навыками	Владеет способностью использовать			
	проектирования приборов	базовые закономерности и соотношения,			
	квантовой электроники и	описывающие распространение и			
	фотоники	взаимодействие электромагнитных волн в			
		различных условиях, а также			
		математический аппарат фотоники для			
		анализа, описания и проектирования			
		приборов и устройств фотоники.			

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 2 зачетных единиц, 72 академических часов. Распределение трудоемкости дисциплины по видам учебной деятельности представлено в таблице 4.1.

Таблица 4.1 – Трудоемкость дисциплины по видам учебной деятельности

Виды учебной деятельности		Семестры
Биды учеоной деятельности	часов	2 семестр
Контактная аудиторная работа обучающихся с преподавателем, всего	28	28
Практические занятия	28	28
Самостоятельная работа обучающихся, в т.ч. контактная	44	44
внеаудиторная работа обучающихся с преподавателем, всего		
Подготовка к зачету	8	8
Подготовка к тестированию	8	8
Выполнение практического задания	28	28
Общая трудоемкость (в часах)	72	72
Общая трудоемкость (в з.е.)	2	2

5. Структура и содержание дисциплины

5.1. Разделы (темы) дисциплины и виды учебной деятельности

Структура дисциплины по разделам (темам) и видам учебной деятельности приведена в таблице 5.1.

Таблица 5.1 – Разделы (темы) дисциплины и виды учебной деятельности

таолица 3.1 тазделы (темы) диециплины	п впды	<u>, 10011011</u>	деятельности	
Названия разделов (тем) дисциплины	Прак. зан., ч	Сам. раб., ч	Всего часов (без экзамена)	Формируемые компетенции
2 ce	еместр			
1 Фотонные кристаллы. Эффекты в фотонных	-	4	4	ПК-1
кристаллах				
2 Распространение электромагнитного	-	4	4	ПК-1
излучения в веществе				
3 Распространение электромагнитных волн в	10	14	24	ПК-1
периодических средах				
4 Нелинейно-оптические явления в фотонных	18	22	40	ПК-1
кристаллах				
Итого за семестр	28	44	72	
Итого	28	44	72	

5.2. Содержание разделов (тем) дисциплины

Содержание разделов (тем) дисциплины (в т.ч. по лекциям) приведено в таблице 5.2.

Таблица 5.2 – Содержание разделов (тем) дисциплины (в т.ч. по лекциям)

Названия разделов (тем) дисциплины	Содержание разделов (тем) дисциплины (в т.ч. по лекциям)	Трудоемкость (лекционные занятия), ч	Формируемые компетенции		
2 семестр					

1 Фотонные кристаллы.	Периодические слоистые среды.	-	ПК-1
Эффекты в фотонных	Особенности физических свойств.		
кристаллах	Эффекты в фотонных кристаллах		
	Итого	-	
2 Распространение	Уравнения Максвелла. Волновое	-	ПК-1
электромагнитного	уравнение. Лазерные импульсы.		
излучения в веществе	Групповая скорость. Различные		
	типы сред. Оптические свойства		
	кристаллов.		
	Итого	-	
3 Распространение	Основные особенности	-	ПК-1
электромагнитных волн в	взаимодействия с		
периодических средах	периодическими средами.		
	Распространение оптических волн		
	через периодические структуры.		
	Распространение оптических волн		
	через периодические доменные		
	структуры.		
	Итого	-	
4 Нелинейно-оптические	Пространственное	-	ПК-1
явления в фотонных	взаимодействие оптических		
кристаллах	пучков на фотонных решетках.		
	Активные фотонные структуры.		
	Генерация оптических гармоник.		
	Параметрическое преобразование		
	частоты.		
	Итого	-	
	Итого за семестр	-	
	Итого	-	

5.3. Практические занятия (семинары)

Наименование практических занятий (семинаров) приведено в таблице 5.3. Таблица 5.3. – Наименование практических занятий (семинаров)

Названия разделов (тем)	Наименование практических	Трудоемкость,	Формируемые
дисциплины	занятий (семинаров)	Ч	компетенции
	2 семестр		
3 Распространение	Распространение оптических	10	ПК-1
электромагнитных волн в	волн через периодические		
периодических средах	структуры. Распространение		
	оптических волн через		
	периодические доменные		
	структуры		
	Итого	10	

4 Нелинейно-оптические	Пространственное	18	ПК-1
явления в фотонных	взаимодействие оптических		
кристаллах	пучков на фотонных решетках.		
	Активные фотонные структуры.		
	Генерация оптических гармоник.		
	Параметрическое		
	преобразование частоты.		
	Итого	18	
	28	_	
	Итого	28	

5.4. Лабораторные занятия

Не предусмотрено учебным планом

5.5. Курсовой проект / курсовая работа

Не предусмотрено учебным планом

5.6. Самостоятельная работа

Виды самостоятельной работы, трудоемкость и формируемые компетенции представлены в таблице 5.6.

Таблица 5.6. – Виды самостоятельной работы, трудоемкость и формируемые компетенции

Названия разделов (тем) дисциплины	Виды самостоятельной работы	Трудоемкость,	Формируемые компетенции	Формы контроля
	2 сем	естр		
1 Фотонные кристаллы.	Подготовка к зачету	2	ПК-1	Зачёт
Эффекты в фотонных кристаллах	Подготовка к тестированию	2	ПК-1	Тестирование
	Итого	4		
2 Распространение	Подготовка к зачету	2	ПК-1	Зачёт
электромагнитного излучения в веществе	Подготовка к тестированию	2	ПК-1	Тестирование
	Итого	4		
3 Распространение	Подготовка к зачету	2	ПК-1	Зачёт
электромагнитных волн в периодических средах	Выполнение практического задания	10	ПК-1	Практическое задание
	Подготовка к тестированию	2	ПК-1	Тестирование
	Итого	14		
4 Нелинейно-оптические	Подготовка к зачету	2	ПК-1	Зачёт
явления в фотонных кристаллах	Выполнение практического задания	18	ПК-1	Практическое задание
	Подготовка к тестированию	2	ПК-1	Тестирование
	Итого	22		
	Итого за семестр	44		
	Итого	44		

5.7. Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий представлено в таблице 5.7.

Таблица 5.7 – Соответствие компетенций, формируемых при изучении дисциплины, и видов занятий

Формания	Виды учебной деятельности		Формулионтона
Формируемые компетенции	Прак. зан.	Сам. раб.	Формы контроля
ПК-1	+	+	Зачёт, Практическое задание,
			Тестирование

6. Рейтинговая система для оценки успеваемости обучающихся

6.1. Балльные оценки для форм контроля

Балльные оценки для форм контроля представлены в таблице 6.1.

Таблица 6.1 – Балльные оценки

Формы контроля	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
		2 семестр		
Зачёт	0	0	20	20
Практическое задание	25	20	15	60
Тестирование	5	5	10	20
Итого максимум за	30	25	45	100
период				
Нарастающим итогом	30	55	100	100

6.2. Пересчет баллов в оценки за текущий контроль

Пересчет баллов в оценки за текущий контроль представлен в таблице 6.2.

Таблица 6.2 – Пересчет баллов в оценки за текущий контроль

Баллы на дату текущего контроля	Оценка	
\geq 90% от максимальной суммы баллов на дату ТК		
От 70% до 89% от максимальной суммы баллов на дату ТК		
От 60% до 69% от максимальной суммы баллов на дату ТК		
< 60% от максимальной суммы баллов на дату ТК	2	

6.3. Пересчет суммы баллов в традиционную и международную оценку

Пересчет суммы баллов в традиционную и международную оценку представлен в таблице 6.3.

Таблица 6.3 – Пересчет суммы баллов в традиционную и международную оценку

1 7	, , , , , , , , , , , , , , , , , , , ,	
Оценка	Итоговая сумма баллов, учитывает успешно сданный	Оценка (ЕСТЅ)
Оценка	экзамен	Оценка (ЕСТЗ)
	SRSUMEN	
5 (отлично) (зачтено)	90 – 100	А (отлично)
4 (хорошо) (зачтено)	85 – 89	В (очень хорошо)
	75 – 84	С (хорошо)
	70 – 74	D (удовлетворительно)
3 (удовлетворительно) (зачтено)	65 – 69	
	60 – 64	Е (посредственно)

7. Учебно-методическое и информационное обеспечение дисциплины

7.1. Основная литература

1. Голенищев-Кутузов, А.В. Фотонные и фононные кристаллы [Электронный ресурс] / А.В. Голенищев-Кутузов, В.А. Голенищев-Кутузов, Р.И. Калимуллин. — Электрон. дан. — Москва: Физматлит, 2010. — 156 с. — ресурс доступен по IP-адресам ТУСУРа [Электронный ресурс]: — Режим доступа: https://e.lanbook.com/book/48285.

7.2. Дополнительная литература

- 1. Основы физической и квантовой оптики: Учебное пособие / В. М. Шандаров 2012. 197 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/750.
- 2. Введение в нелинейную оптику: Учебное пособие / С. М. Шандаров 2012. 41 с. [Электронный ресурс]: Режим доступа: https://edu.tusur.ru/publications/2059.

7.3. Учебно-методические пособия

7.3.1. Обязательные учебно-методические пособия

1. Когерентная и нелинейная оптика фотонных материалов: Методические указания по проведению практических занятий и организации самостоятельной работы / А. Е. Мандель - 2018. 21 с. [Электронный ресурс]: — Режим доступа: https://edu.tusur.ru/publications/8117.

7.3.2. Учебно-методические пособия для лиц с ограниченными возможностями здоровья и инвалидов

Учебно-методические материалы для самостоятельной и аудиторной работы обучающихся из числа лиц с ограниченными возможностями здоровья и инвалидов предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации.

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

7.4. Современные профессиональные базы данных и информационные справочные системы

При изучении дисциплины рекомендуется обращаться к современным базам данных, информационно-справочным и поисковым системам, к которым у ТУСУРа открыт доступ: https://lib.tusur.ru/resursy/bazy-dannyh.

8. Материально-техническое и программное обеспечение дисциплины

8.1. Материально-техническое и программное обеспечение для практических занятий

Учебная лаборатория: учебная аудитория для проведения занятий практического типа, учебная аудитория для проведения занятий лабораторного типа, помещение для курсового проектирования (выполнения курсовых работ), помещение для проведения групповых и индивидуальных консультаций; 634034, Томская область, г. Томск, Вершинина улица, д. 74, 110 ауд.

Описание имеющегося оборудования:

- Лабораторные стенды (6 шт.);
- Измерительные приборы;
- Доска магнитно-маркерная;
- Оптическая скамья ОСК-4;

- Помещение для хранения учебного оборудования;
- Комплект специализированной учебной мебели;
- Рабочее место преподавателя.

8.2. Материально-техническое и программное обеспечение для самостоятельной работы

Для самостоятельной работы используются учебные аудитории (компьютерные классы), расположенные по адресам:

- 634050, Томская область, г. Томск, Ленина проспект, д. 40, 233 ауд.;
- 634045, Томская область, г. Томск, ул. Красноармейская, д. 146, 209 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 47, 126 ауд.;
- 634034, Томская область, г. Томск, Вершинина улица, д. 74, 207 ауд.

Описание имеющегося оборудования:

- учебная мебель;
- компьютеры;
- компьютеры подключены к сети «Интернет» и обеспечивают доступ в электронную информационно-образовательную среду ТУСУРа.

Перечень программного обеспечения:

- Microsoft Windows;
- OpenOffice;
- Kaspersky Endpoint Security 10 для Windows;
- 7-Zip:
- Google Chrome.

8.3. Материально-техническое обеспечение дисциплины для лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины лицами с ограниченными возможностями здоровья и инвалидами осуществляется с использованием средств обучения общего и специального назначения.

При занятиях с обучающимися с **нарушениями слуха** предусмотрено использование звукоусиливающей аппаратуры, мультимедийных средств и других технических средств приема/передачи учебной информации в доступных формах, мобильной системы преподавания для обучающихся с инвалидностью, портативной индукционной системы. Учебная аудитория, в которой занимаются обучающиеся с нарушением слуха, оборудована компьютерной техникой, аудиотехникой, видеотехникой, электронной доской, мультимедийной системой.

При занятиях с обучающимися с нарушениями зрения предусмотрено использование в лекционных и учебных аудиториях возможности просмотра удаленных объектов (например, текста на доске или слайда на экране) при помощи видеоувеличителей для комфортного просмотра.

При занятиях с обучающимися с нарушениями опорно-двигательного аппарата используются альтернативные устройства ввода информации и другие технические средства приема/передачи учебной информации в доступных формах, мобильной системы обучения для людей с инвалидностью.

9. Оценочные материалы и методические рекомендации по организации изучения дисциплины

9.1. Содержание оценочных материалов для текущего контроля и промежуточной аттестации

Для оценки степени сформированности и уровня освоения закрепленных за дисциплиной компетенций используются оценочные материалы, представленные в таблице 9.1.

Таблица 9.1 – Формы контроля и оценочные материалы

Названия разделов (тем) дисциплины	Формируемые компетенции	Формы контроля	Оценочные материалы (ОМ)
------------------------------------	-------------------------	----------------	--------------------------

1 Фотонные кристаллы. Эффекты в фотонных	ПК-1	Зачёт	Перечень вопросов для зачета	
кристаллах		Тестирование	Примерный перечень тестовых заданий	
2 Распространение электромагнитного излучения	ПК-1	Зачёт	Перечень вопросов для зачета	
в веществе		Тестирование	Примерный перечень тестовых заданий	
3 Распространение электромагнитных волн в	ПК-1	Зачёт	Перечень вопросов для зачета	
периодических средах		Практическое задание	Темы практических заданий	
		Тестирование	Примерный перечень тестовых заданий	
4 Нелинейно-оптические явления в фотонных	ПК-1	Зачёт	Перечень вопросов для зачета	
кристаллах		Практическое задание	Темы практических заданий	
		Тестирование	Примерный перечень тестовых заданий	

Шкала оценки сформированности отдельных планируемых результатов обучения по дисциплине приведена в таблице 9.2.

Таблица 9.2 – Шкала оценки сформированности планируемых результатов обучения по

дисциплине

дисциплине				
Оценка	Баллы за ОМ	Формулировка требований к степени сформированности планируемых результатов обучения		
·		знать	уметь	владеть
2	< 60% от	отсутствие знаний	отсутствие	отсутствие
(неудовлетворительно)	максимальной	или фрагментарные	умений или	навыков или
	суммы баллов	знания	частично	фрагментарные
			освоенное	применение
			умение	навыков
3	от 60% до	общие, но не	в целом успешно,	в целом
(удовлетворительно)	69% от	структурированные	но не	успешное, но не
	максимальной	знания	систематически	систематическое
	суммы баллов		осуществляемое	применение
			умение	навыков
4 (хорошо)	от 70% до	сформированные,	в целом	в целом
	89% от	но содержащие	успешное, но	успешное, но
	максимальной	отдельные	содержащие	содержащие
	суммы баллов	проблемы знания	отдельные	отдельные
			пробелы умение	пробелы
				применение
				навыков
5 (отлично)	≥ 90% ot	сформированные	сформированное	успешное и
	максимальной	систематические	умение	систематическое
	суммы баллов	знания		применение
				навыков

Шкала комплексной оценки сформированности компетенций приведена в таблице 9.3. Таблица 9.3 – Шкала комплексной оценки сформированности компетенций

,	шкала комплексной оценки сформированности компетенции		
Оценка	Формулировка требований к степени компетенции		
2	Не имеет необходимых представлений о проверяемом материале		
(неудовлетворительно)	или		
	Знать на уровне ориентирования, представлений. Обучающийся знает		
	основные признаки или термины изучаемого элемента содержания, их		
	отнесенность к определенной науке, отрасли или объектам, узнает в		
	текстах, изображениях или схемах и знает, к каким источникам нужно		
	обращаться для более детального его усвоения.		
3	Знать и уметь на репродуктивном уровне. Обучающихся знает		
(удовлетворительно)	изученный элемент содержания репродуктивно: произвольно		
	воспроизводит свои знания устно, письменно или в демонстрируемых		
	действиях.		
4 (хорошо)	Знать, уметь, владеть на аналитическом уровне. Зная на		
	репродуктивном уровне, указывать на особенности и взаимосвязи		
	изученных объектов, на их достоинства, ограничения, историю и		
	перспективы развития и особенности для разных объектов усвоения.		
5 (отлично)	Знать, уметь, владеть на системном уровне. Обучающийся знает		
	изученный элемент содержания системно, произвольно и доказательно		
	воспроизводит свои знания устно, письменно или в демонстрируемых		
	действиях, учитывая и указывая связи и зависимости между этим		
	элементом и другими элементами содержания дисциплины, его		
	значимость в содержании дисциплины.		

9.1.1. Примерный перечень тестовых заданий

- 1. Что называют фотонными кристаллами?
 - а) макроскопические периодические структуры, состоящие из чередующихся в пространстве пар диэлектрических элементов, отличающихся диэлектрическими постоянными (скоростями электромагнитных волн)
 - б) макроскопические непериодические структуры, состоящие из чередующихся в пространстве пар диэлектрических элементов, отличающихся диэлектрическими постоянными 9 (скоростями электромагнитных волн)
 - в) макроскопические периодические структуры, состоящие из движущихся в пространстве электронных сгустков
 - г) макроскопические непериодические структуры, состоящие из чередующихся в пространстве пар положительных и отрицательных ионов
- 2. Что называют запрещённой зоной фотонного кристалла?
 - а) спектральную область электромагнитных волн, для которой фотонный кристалл является прозрачным
 - б) спектральную область электромагнитных волн, для которой распространение излучения в фотонном кристалле оказывается невозможным
 - в) спектральную область электромагнитных волн, в которой длина волны в вакууме во много раз превышает характерный пространственный период элементов фотонного кристалла
 - г) спектральную область электромагнитных волн, в которой излучение отражается от фотонного кристалла под углом 90°
- 3. При падении на плоскую границу раздела двух прозрачных сред плоской световой волны под углом Брюстера ...
 - а) модуль коэффициента отражения R для составляющей вектора поляризации, перпендикулярной плоскости падения, стремится к единице
 - б) модуль коэффициента отражения R для составляющей вектора поляризации в плоскости падения стремится к единице
 - в) модуль коэффициента отражения R для составляющей вектора поляризации в

плоскости падения обращается в нуль

- г) модуль коэффициента отражения R для составляющей вектора поляризации, перпендикулярной плоскости падения, обращается в нуль
- 4. При каком условии наблюдается полное внутреннее отражение плоских световых волн на границе раздела сред с показателями преломления n1 и n2?
 - а) только для волн, поляризованных нормально к плоскости падения
 - б) наблюдается при их падении из оптически более плотной среды на менее плотную под углом, большим arcsin(n2 / n1)
 - в) наблюдается только для волн, поляризованных в плоскости падения
 - Γ) наблюдается при их падении из оптически менее плотной среды на более плотную под углом, большим arcsin(n2/n1)
- 5. Как ведёт себя световой импульс в прозрачой среде с нормальной дисперсией?
 - а) расплывается
 - б) сжимается
 - в) увеличивается по амплитуде
 - г) разбивается на несколько импульсов
- 6. Укажите волновое уравнение для среды с учетом наводимой в ней световыми волнами нелинейной электрической поляризации:

a)
$$\nabla^{2}\mathbf{E} - \mu_{0} \frac{\partial^{2}(\mathbf{\epsilon} \cdot \mathbf{E})}{\partial t^{2}} = \mu_{0} \frac{\partial^{2}\mathbf{P}_{nl}}{\partial t^{2}}$$

6) $\nabla^{2}E - \mu\mathbf{\epsilon} \frac{\partial^{2}E}{\partial t^{2}} = 0$

B) $\frac{\partial A}{\partial z} - \frac{i}{2k} \frac{\partial^{2}A}{\partial x^{2}} = \frac{ik\Delta n_{nl}}{n} A$

T) $U'' + \left(\frac{2k^{2}\Delta n_{nl}}{n} - 2k\gamma\right)U = 0$

- 7. Условием проявления оптической нелинейности среды является зависимость относительной диэлектрической проницаемости материала от:
 - а) напряженности светового поля
 - б) длины волны света
 - в) поляризации светового излучения
 - г) начальной фазы световой волны
- 8. Длиной когерентности для генерации второй гармоники называется расстояние взаимодействия, при котором:
 - а) мощность данной гармоники увеличивается от нуля до первого максимального значения
 - б) мощность данной гармоники увеличивается линейно
 - в) мощность данной гармоники увеличивается квадратично
 - г) мощность данной гармоники достигает первого минимума
- 9. Сильное взаимодействие двух волн с волновыми векторами k1 и k2,

распространяющихся в одном направлении в периодической слоистой структуре с периодом d, возможно при выполнении условия фазового синхронизма:

- a) k1 \square k2 \square m(2 π /d) = 0, m = 1/2, 3/2, 5/2, ...
- 6) $k1 + k2 \square m(2\pi/d) = 0$, m = 1/2, 3/2, 5/2, ...
- B) $k1 \square k2 \square m(2\pi/d) = 0, m = 1, 2, 3, ...$
- Γ) k1 + k2 \Box m(2 π /d) = 0, m = 1, 2, 3, ...
- 10. Сильное взаимодействие двух волн с волновыми векторами k1 и k2, распространяющихся в противоположных направлениях в периодической слоистой структуре с периодом d, возможно при выполнении условия фазового синхронизма:
 - a) k1 \square k2 \square m(2 π /d) = 0, m = 1/2, 3/2, 5/2, ...
 - 6) $k1 + k2 \square m(2\pi/d) = 0$, m = 1/2, 3/2, 5/2, ...
 - B) k1 \Box k2 \Box m(2 π /d) = 0, m = 1, 2, 3, ...
 - Γ) k1 + k2 \Box m(2 π /d) = 0, m = 1, 2, 3, ...
- 11. Максимальное пропускание периодической слоистой структурой с периодом d и толщиной L при распространении волны с волновым вектором km по нормали к её слоям наблюдается при выполнении условия:
 - a) $| \text{km} | \text{L} = (2m+1)\pi/2, m = 1, 2, 3, ...$
 - 6) $| \text{km} | \text{L} = (2m+1)\pi/2, \text{m} = 1/2, 3/2, 5/2, \dots$
 - B) $\mid \text{km} \mid \text{L} = \text{m}\pi, \text{ m} = 1/2, 3/2, 5/2, \dots$
 - Γ) | km | L = m π , m = 1, 2, 3, ...
- 12. Максимальное отражение от периодической слоистой структуры с периодом d и толщиной L при распространении волны с волновым вектором km по нормали к её слоям наблюдается при выполнении условия:
 - a) $| \text{km} | \text{L} = (2m + 1)\pi/2, m = 1, 2, 3, ...$
 - δ) | km | L = $m\pi$, m = 1, 2, 3, ...
 - B) | km | L = $m\pi$, m = 1/2, 3/2, 5/2, ...
 - Γ) | km | L = $(2m + 1)\pi/2$, m = 1/2, 3/2, 5/2, ...
- 13. Почему приложение постоянного однородного электрического поля к периодической доменной структуре приводит к периодическим изменениям показателя преломления?
 - а) вследствие различий в статической диэлектрической проницаемости в доменах с противоположными направлениями вектора спонтанной поляризации
 - б) вследствие различий в статической магнитной проницаемости в доменах с противоположными направлениями вектора спонтанной поляризации
 - в) вследствие различий в знаках линейного электрооптического коэффициента г в доменах с противоположными направлениями вектора спонтанной поляризации
 - г) вследствие различий в знаках квадратичного электрооптического коэффициента R в доменах с противоположными направлениями вектора спонтанной поляризации
- 14. Приложение к периодической доменной структуре в кристалле ниобата лития с доменными стенками, параллельными плоскости YZ, постоянного однородного электрического поля вдоль оси Y, приводит к возмущениям компонент тензора диэлектрической проницаемости:
 - a) Δε33
 - 6) $\Delta \varepsilon 12 = \Delta \varepsilon 21$
 - B) $\Delta \varepsilon 13 = \Delta \varepsilon 31$
 - Γ) $\Delta \varepsilon 11 = \Box \Delta \varepsilon 22$ и $\Delta \varepsilon 23 = \Delta \varepsilon 32$

9.1.2. Перечень вопросов для зачета

- 1. Известные разновидности фотонных кристаллов. Периодические слоистые среды.
- 2. Особенности физических свойств ФК.
- 3. Эффекты в фотонных кристаллах.
- 4. Уравнения Максвелла.
- 5. Волновое уравнение.
- 6. Лазерные импульсы. Групповая скорость.
- 7. Оптические свойства кристаллов.
- 8. Основные особенности взаимодействия с периодическими средами.
- 9. Распространение оптических волн через периодические структуры.
- 10. Распространение оптических волн через периодические доменные структуры.

- 11. Пространственное взаимодействие оптических пучков на фотонных решетках.
- 12. Активные фотонные структуры.
- 13. Генерация оптических гармоник
- 14. Параметрическое преобразование частоты

9.1.3. Темы практических заданий

- 1. Основные особенности взаимодействия с периодическими средами. Распространение оптических волн через периодические структуры.
- 2. Распространение оптических волн через периодические доменные структуры
- 3. Пространственное взаимодействие оптических пучков на фотонных решетках.
- 4. Генерация оптических гармоник.
- 5. Параметрическое преобразование частоты.

9.2. Методические рекомендации

Учебный материал излагается в форме, предполагающей самостоятельное мышление студентов, самообразование. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Начать изучение дисциплины необходимо со знакомства с рабочей программой, списком учебно-методического и программного обеспечения. Самостоятельная работа студента включает работу с учебными материалами, выполнение контрольных мероприятий, предусмотренных учебным планом.

В процессе изучения дисциплины для лучшего освоения материала необходимо регулярно обращаться к рекомендуемой литературе и источникам, указанным в учебных материалах; пользоваться через кабинет студента на сайте Университета образовательными ресурсами электронно-библиотечной системы, а также общедоступными интернет-порталами, содержащими научно-популярные и специализированные материалы, посвященные различным аспектам учебной дисциплины.

При самостоятельном изучении тем следуйте рекомендациям:

- чтение или просмотр материала осуществляйте со скоростью, достаточной для индивидуального понимания и освоения материала, выделяя основные идеи; на основании изученного составить тезисы. Освоив материал, попытаться соотнести теорию с примерами из практики;
- если в тексте встречаются незнакомые или малознакомые термины, следует выяснить их значение для понимания дальнейшего материала;
 - осмысливайте прочитанное и изученное, отвечайте на предложенные вопросы.

Студенты могут получать индивидуальные консультации, в т.ч. с использованием средств телекоммуникации.

По дисциплине могут проводиться дополнительные занятия, в т.ч. в форме вебинаров. Расписание вебинаров и записи вебинаров публикуются в электронном курсе / электронном журнале по дисциплине.

9.3. Требования к оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусмотрены дополнительные оценочные материалы, перечень которых указан в таблице 9.4.

Таблица 9.4 – Дополнительные материалы оценивания для лиц с ограниченными возможностями здоровья и инвалидов

		1 ' '		
	Votopopuu oõyuotouuvaa	Виды дополнительных оценочных	Формы контроля и оценки	
Категории обучающихся		материалов	результатов обучения	
С нарушениями слуха		Тесты, письменные	Преимущественно письменная	
	самостоятельные работы, вопрос		проверка	
		к зачету, контрольные работы		
ſ	С нарушениями зрения	Собеседование по вопросам к	Преимущественно устная	
		зачету, опрос по терминам	проверка (индивидуально)	

С нарушениями опорно-	Решение дистанционных тестов,	Преимущественно
двигательного аппарата	контрольные работы, письменные	дистанционными методами
	самостоятельные работы, вопросы	
	к зачету	
С ограничениями по	Тесты, письменные	Преимущественно проверка
общемедицинским	самостоятельные работы, вопросы	методами, определяющимися
показаниям	к зачету, контрольные работы,	исходя из состояния
	устные ответы	обучающегося на момент
		проверки

9.4. Методические рекомендации по оценочным материалам для лиц с ограниченными возможностями здоровья и инвалидов

Для лиц с ограниченными возможностями здоровья и инвалидов предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной форме;
- в печатной форме с увеличенным шрифтом;
- в форме электронного документа;
- методом чтения ассистентом задания вслух;
- предоставление задания с использованием сурдоперевода.

Лицам с ограниченными возможностями здоровья и инвалидам увеличивается время на подготовку ответов на контрольные вопросы. Для таких обучающихся предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге;
- набор ответов на компьютере;
- набор ответов с использованием услуг ассистента;
- представление ответов устно.

Процедура оценивания результатов обучения лиц с ограниченными возможностями здоровья и инвалидов по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа;
- в печатной форме увеличенным шрифтом.

Для лиц с нарушениями слуха:

- в форме электронного документа;
- в печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа;
- в печатной форме.

При необходимости для лиц с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения может проводиться в несколько этапов.

ЛИСТ СОГЛАСОВАНИЯ

Рассмотрена и одобрена на заседании кафедры ЭП протокол № 11 от «24 » 11 2023 г.

СОГЛАСОВАНО:

Должность	Инициалы, фамилия	Подпись
Заведующий выпускающей каф. ЭП	Н.И. Буримов	Согласовано, 393931b1-af66-45e5- a537-c5831244e4ca
Заведующий обеспечивающей каф. ЭП	Н.И. Буримов	Согласовано, 393931b1-af66-45e5- a537-c5831244e4ca
Начальник учебного управления	И.А. Лариошина	Согласовано, c3195437-a02f-4972- a7c6-ab6ee1f21e73
ЭКСПЕРТЫ:		
Доцент, каф. ЭП	А.И. Аксенов	Согласовано, d90d5f87-f1a9-4440- b971-ce4f7e994961
Профессор, каф. ЭП	Л.Н. Орликов	Согласовано, 8afa57b7-3fcf-44bc- 922a-3c3f168876e6
РАЗРАБОТАНО:		
Старший преподаватель, каф. ЭП	М.В. Бородин	Разработано, 4bab9e2d-1d70-4531- 8ac1-b921b013421a