Учёные Томского госуниверситета систем управления и радиоэлектроники совместно с коллегами из компании «Композит» Роскосмоса (г. Королёв Московской области) создают новое покрытие класса «Оптический солнечный отражатель», впервые используя для этого соединение модифицированных наночастицами пигмента сульфата бария и кремнийорганического лака.
Данные покрытия предназначены в первую очередь для нанесения на радиаторы терморегулирования космических аппаратов, которые поддерживают на заданном уровне и регулируют температуру, обеспечивая работу всех приборов и устройств аппаратов, защищая их от перегрева.
Михаил Михайлов, заведующий лабораторией радиационного и космического материаловедения ТУСУРа
Наша основная задача – обеспечить новому покрытию высокою стойкость к действию различных видов излучений космического пространства. Взятый за основу пигмент – сульфат бария, как ни странно, в космической отрасли не использовался никем в мире, несмотря на то, что у него прекрасные характеристики – очень малый коэффициент поглощения солнечного излучения.
Чтобы улучшить стойкость к действию факторов космического пространства составляющих таких покрытий, учёные ТУСУРа определяют подходящий тип наночастиц, а также оптимальные параметры модифицирования – условия введения наночастиц в соединения и их концентрацию, дающих наиболее высокий эффект и обеспечивающих полученному материалу стойкость к самым различным видам излучения в космосе. Параллельно проводятся испытания и исследования изменений свойств и рабочих характеристик немодифицированных и модифицированных в оптимальных условиях пигмента сульфата бария и кремнийорганического лака.
Внедрение нового покрытия позволит уменьшить площадь радиатора терморегулирования, размеры которого могут достигать 30 – 40 квадратных метров.
«Поскольку материал даже в исходных характеристиках хорошо отражает солнечный свет, при его нанесении удастся существенно уменьшить площадь радиаторов. Если другие покрытия класса «Оптический солнечный отражатель» поглощают до 20 % солнечной энергии, то сульфат бария – только 7 – 10 % поглощает, остальное – отражает», – пояснил заведующий лабораторией ТУСУРа.
В рамках проекта учёные в течение 2017–2018 гг. разрабатывали технологии модифицирования сульфата бария и кремнийорганического лака, в 2019 году приступили к технологии изготовления покрытия на их основе. Одновременно в лаборатории ТУСУРа работают над созданием физических моделей деградации этих сложных по составу покрытий при раздельном и одновременном действии различных видов излучений космического пространства (протонов, электронов и квантов солнечного спектра). После чего будет осуществлена экспериментальная проверка моделей на имитаторе условий космического пространства и прогнозирование изменений оптических свойств и рабочих характеристик на реальных орбитах сроком до 20 лет с использованием созданных моделей и полученных экспериментальных результатов.
Индустриальный партнёр ТУСУРа – ведущая материаловедческая организация Роскосмоса компания «Композит» – с 2020 года планирует внедрять результаты проведённой работы в практику, разработав технологию изготовления и нанесения покрытий на металлические поверхности.
Работа финансируется в рамках федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 – 2020 гг.».
В рамках программы развития «Приоритет 2030» и Госзадания в Томском госуниверситете систем управления и радиоэлектроники созданы новые типы покрытий для поддержания температуры космических аппаратов на необходимом уровне.
Ко Дню космонавтики собрали дайджест разработок университета, созданных в рамках реализации программы развития «Приоритет 2030» для космоса.
РНФ подвел итоги конкурсов отдельных научных групп. В числе победителей – проект кафедры физики ТУСУРа «Электронно-лучевой синтез высокотемпературных теплозащитных керамических покрытий на основе цирконата гадолиния: особенности физических процессов и актуальные применения».
Ученые Томского госуниверситета систем управления и радиоэлектроники создали в рамках программы развития «Приоритет 2030» пилотную технологическую установку для электронно-лучевого нанесения термобарьерных керамических покрытий на лопатки газотурбинных двигателей. Такие устройства применяются в авиастроении, а также в компрессорных газоперекачивающих установках. В 2024 году планируется пройти сертификацию, которая позволит выполнять заказы предприятий.