Размер шрифта:
+
Цвет сайта:
Изображения:

В ТУСУР работают над созданием оптических элементов для обработки и передачи данных

17 августа 2015
В ТУСУР работают над созданием оптических элементов для обработки и передачи данных
Учёные Томского государственного университета систем управления и радиоэлектроники (ТУСУР) разработали методику оптической записи фотонных структур в кристалле, позволяющую управлять световыми пучками. В дальнейшем это может использоваться при создании элементной базы для устройств обработки и передачи данных на основе оптических технологий (оптических компьютеров).

Исследователям кафедры сверхвысокочастотной и квантовой радиотехники (СВЧиКР) ТУСУР удалось записать в кристалле ниобата лития (LiNbO3) фотонные структуры, состоящие из оптических волноводов диаметром в несколько микрон, которые позволяют управлять световыми пучками в кристалле размеров меньше 1 см3. Как поясняют учёные, такие кристаллы с записанными волноводно-оптическими структурами можно сравнить с печатными платами, которые применяются в современной электронике. И если в электронике все процессы связаны с перемещением определенных заряженных частиц – электронов, в фотонике ключевыми носителями являются частицы света – фотоны, манипуляции с которыми приводят к функционированию фотонных устройств - более быстрых, чем их электронные аналоги. Поэтому научиться управлять пучком света, а значит, управлять потоком фотонов, – одна из главных задач фотоники, т.к. составные частицы пучка – фотоны – будут использоваться в будущих оптических компьютерах вместо электронов, на которых построен нынешний кремниевый процессор компьютера.

Сотрудник кафедры СВЧиКР, кандидат технических наук Антон Перин рассказал, что проводимые в ТУСУР исследования приближают учёных к созданию компактных, миниатюрных, энергонезависимых элементов управления световыми пучками, фактически, элементной базы, которую потом возможно будет использовать для обработки и передачи данных в оптических компьютерах. И осуществлять это с меньшими энергопотерями и с большей скоростью по сравнению с современной электроникой.

Для проведения исследований учёные разработали оригинальную экспериментальную установку. По словам Антона Перина, уникальность в том, что с её помощью удалось объединить сразу два эффекта для создания необходимых волноводных структур в кристалле – скомбинировать уже известные фоторефрактивный и пироэлектрический эффект. Он подчеркнул, что обычно разные эффекты воздействия на кристалл используются по отдельности. Использовать их в комбинации и получить необходимый результат впервые удалось именно разработчикам ТУСУР.

Работа ведётся в рамках государственного задания на выполнение работ в сфере научной деятельности, до конца года исследователи планируют получить патент на полезную модель. Промежуточные результаты исследований учёных ТУСУР опубликованы в журнале «Journal of Physics: Conference Series» и утверждены к печати в международных изданиях «Physics of wave phenomena» и «Physics Procedia».

В сентябре учёные примут участие в 3-ей международной школе-семинаре «Фотоника нано- и микроструктур», которую ТУСУР проводит совместно с Институтом автоматики и процессов управления ДВО РАН (г. Владивосток) в Томске.

Материалы по теме

22 июня 2018

Представители ТУСУРа принимают участие во Всероссийской научно-практической конференции РФФИ о совершенствовании системы взаимодействия фонда с российскими регионами, которая проходит 22–23 июня в Томске.

26 июня 2018

В Томском государственном университете систем управления и радиоэлектроники собрали обучающего робота из конструктора собственной разработки с использованием чипа отечественной компании «Миландр».

03 июля 2018

ТУСУР с рабочим визитом посетил гендиректор АО «ЦКБ «Дейтон» Юрий Рубцов, который обсудил с ректором Александром Шелупановым формирование кооперации по созданию российской системы проектирования отечественной электронной компонентной базы.

12 июля 2018

В Томском государственном университете систем управления и радиоэлектроники разрабатывают систему климат-контроля для «умного дома», которая учитывает температуру воздуха как внутри, так и снаружи помещения и позволяет измерять тепловую энергию, отдаваемую каждым отопительным прибором с учётом его индивидуальных особенностей: окраска, зашлакованность, наличие мебели и других.